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Abstract: The structure and energetics of small platinum clusters Ptn (n = 2-13) are studied by extended Huckel techniques 
(EHT) with and without (SO) spin-orbit coupling. At each step of the metallic growth, a large variety of structures with 
a common minimal interatomic distance (hard-sphere packing) have been considered in order to determine the most stable 
isomers. The optimum geometry of some of these structures, for which simple distortions could lead to an energy stabilization, 
have been computed by using a modified version of the classical EHT set of programs which takes into account the short distance 
interatomic repulsion. The computations also include some infinite one-dimensional ribbons, two-dimensional sheets, and 
three-dimensional bulk crystals for comparison with the properties of the clusters. Various analyses have been attempted to 
rationalize the computed structural and energetical characteristics of the metallic growth. The concept of maximum coordination 
represents a useful guideline, but a more detailed consideration of the local structures is required to satisfactorily describe 
the growth. It is observed that the cohesive energy is optimal when the cluster fits within a small sphere. The relative SO 
contribution to the cohesive energy decreases from 32% to 12% on going from the small aggregates to the metal bulk. This 
variation results from two opposite factors: the decrease of the electronic d population of the metal atoms and the increase 
of the geometrical constraints associated with local coordination patterns. 

1. Introduction and Scope 

The chemistry of metal clusters is a fascinating and blooming 
area of investigation. It has been the subject of numerous ex­
perimental2 and theoretical studies3 during the last decade. They 
have contributed greatly to our understanding of this original class 
of compounds. 

Although, because of their size, clusters are often described as 
normal inorganic molecules, they can also be considered as small 
pieces of metal, and present strong analogies with the metal surface 
concerning reactivity.20 Thus, metal clusters are at the frontier 
between molecular chemistry and solid-state physics, and a part 
of the interest in this field comes from the hope of gaining new 
insight into the chemical properties of the metal surfaces used 
in heterogeneous catalysis.4 

Initially, clusters refered to the smallest purely metallic particles 
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that are described by geometric shapes rather than by a crys-
tallographic lattice with long-range order. By extension, they also 
refer to polymetallic complexes with a few metallic atoms sur­
rounded by ligands (molecular clusters). As the ligands provide 
most of the stability of the clusters, naked clusters are chemically 
unstable species, and therefore most of the experimental data 
concern the coordinatively fully (or almost fully) saturated com­
pounds.5 Numerous crystallographic results give detailed in­
formation on their structures.6 Theoretical studies7 on this class 
of clusters have led to useful rules to understand their striking 
properties. 

The study of the purely metallic clusters has been mainly 
motivated by a desire to understand crystal growth and homo­
geneous nucleation. Such study is also a prerequisite to the 
theoretical analysis of their properties of interaction with ad-
sorbates or with a supporting material. Some works deal with 
the dense packing of spheres82 by using pairwise central Len-
nard-Jones potential calculations.815 An EHT approach is the 
purpose of the present paper. It has been motivated by the recent 
discovery9 of unusually small platinum clusters on Na-Y zeolites 
with an estimated average number of atoms per cluster ranging 
from two to eight. In a following paper, the more stable clusters 
described here will be used for studying catalytic hydrogenation. 

Platinum clusters with 2-13 atoms have been studied in a 
systematic way by extended Huckel technique (EHT) with and 
without the spin-orbit coupling (SO) contribution. SO coupling 
is known to be significant for the atoms of the sixth row. The 
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Table I. H^ Matrix Elements for the d Orbitals of a Single Platinum Atom 
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Table II. Parameters used 

orbital 

Pt 5d 
6s 
6p 

H Is 

Hn, eV 

-12.59 
-10.00 

-5,475 
-13.60 

in EHT Calculations 

exp! exp2 C1 

6.013 2.696 0.6334 
2,554 
2.554 
1.300 

Cl 

0.5513 

results without SO coupling allow a molecular analysis with the 
symmetries and would be suitable for an estimation of the factors 
governing the stability of nickel and palladium clusters, while those 
with SO coupling are more realistic as far as platinum is con­
cerned. Some examples of larger clusters (Pt14-Pt19) have also 
been considered. For comparison with these calculations on small 
metallic aggregates, various computations have been performed 
on the bulk metals as well as on infinite metal sheets of different 
thickness and crystallographic orientation. 

2. Calculation Methods 

Calculations on the various cluster structures have been per­
formed by using the weighted HtJ EHT hamiltonian10a with and 
without the SO coupling contribution. Calculations on infinite 
structures use extensions of the same programs1011,11 within the 
tight-binding scheme.12 Energies are calculated as the average 
over a representative number of points in the reciprocal space.13 

The similarity of both calculation techniques allows useful com­
parison between both types of structures. The consideration of 
the SO coupling requires that we use as an atomic orbital basis 
both the a and /3 spin atomic orbitals. Thus, the EHT + SO 
hamiltonian matrix is twice as large as the classical EHT matrix. 
It can be easily shown that the form of the EHT + SO matrix 
is 

\M -N*\ 
[N M* \ 

The associated complex eigenvalue problem can be solved in the 
quaternion space by the following equation (M + jN)(u + jv) = 
\(u + jv). It leads to degenerate values for the couple of ei­
genvectors (u, v) and (v*, -«*). The elements of the complex 
submatrices M and N for a platinum atom are presented on Table 
I. The EHT parameters are listed on Table II. The parameter 
£ of spin-orbit coupling is 0.624 51 eV.14 

The large number of structures that had to be considered 
prevented a systematic research of their optimal geometry. Thus, 
except for mentioned specific cases, every considered structure 
is built with the same minimum interatomic distance (MID) of 
2.77 A. Such a model corresponds to a hard-sphere packing of 

(10) (a) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. Hoffmann, R.; 
Lipscomb, W. N. J. Chem. Phys. 1962, 36, 2179, 3489; 1962, 37, 2872. The 
off-diagonal hamiltonian elements H11 are derived from the diagonal terms by 
using the modified Wolsberg-Helmoltz formula. Hoffmann, R.; Hofmann, 
P. / . Am. Chem. Soc. 1976, 98, 598. (b) Minot, C; Van Hove, M.; Somorjai, 
G. Surf. Sci. 1982, 127, 441. 

(11) Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978,100, 6093. 
Whangbo, M.-H.; Foshee, H. J.; Hoffmann, R. Inorg. Chem. 1980,19, 1723. 

(12) Andre, J. M. J. Chem. Phys. 1969, 50, 1536. 
(13) Chadi, D. J.; Cohen, M. L. Phys. Rev. B 1973, 8, 5747. 
(14) Herman, F.; Skillman, F. "Atomic Structure Calculations"; Pren­
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platinum atoms. The length of 2.77 A has been commonly used 
in previous studies.10b'15 It is in close agreement with the ex­
perimentally determined distance in the bulk metal.2,16 The 
hard-sphere assumption sounds a reasonable approximation al­
though it is usually estimated that the metal-metal distance is 
shorter (approximately 0.1 A) in small clusters than in the metal 
bulk.2 For a few structures, geometrical optimization has been 
performed with a modified version of the classical EHT program 
since the classical method is unable to estimate the bond lengths. 
The present modified version introduces a repulsive part in the 
interatomic potential. Two ways of introducing this correction 
have been considered. The first one consists of modifying the 
Wolfsberg-Helmoltz formula for the interaction between two 
orbitals. Various authors have proposed different correction 
formulas.17a For the sake of simplicity, we replace the classical 
hamiltonian Hy by the expression Hy(I - exp(a - bR)), where 
R is the interatomic distance, and a and b are parameters. It is 
imposed that R remains significantly larger than R0 (=a/b) to 
prevent the new hamiltonian to vanish at short distance while the 
overlap is large.18 At large distances, the correction is insig­
nificant, but it increases rapidly with interatomic compression 
around the MID. The parameters a and b have been adjusted 
to get an optimal distance of 2.77 A for the Pt13 highly symmetric 
cuboctahedron structure. Several sets of values satisfy this re­
quirement depending on the value of R0. Since no clear cut 
argument allows us to choose among the different possibilities, 
three sets of parameters have been considered. They correspond 
to R0, a, and b equal to 2.5 A, 39.375, 15.75 A"1; 2.6 A, 70.2, 
27.0 A"1; 2.65 A, 19.25, 45.0 A"1, respectively. The second way 
of taking into account the repulsion is to consider that the main 
neglected factor in the EHT is the nuclear repulsion and to use 
a two-step calculation by adding an atom-atom repulsive energy 
to the classical one-electron energy.17*3 The formula exp(c - dR) 
has been found to give reasonable results for the corrected EHT.17c 

We select four sets of values for the coupled parameters (c, d) 
in order to scan different relative magnitudes of the core-core 
repulsion (see Table VII). 

3. Guidelines in the Selection of the Structures 

The experimentally determined structures of the molecular 
clusters depict a wide variety of geometries. Their analysis2 shows 
that a large fraction of the polyhedra defined by the purely metallic 
network have only triangular faces. At the start of the present 
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Figure 1. Diagrammatic description of clusters. For the isomers of class A, the full lines depict the nearest-neighbor relationship for atoms located 
in a reference CPTL plane of bench mark 0. A small circle (O), a cross (X), a small square (•), and a small triangle (A) represent the projection 
on this plane of atoms located in the CPTL planes +1, - 1 , +2, and -2, respectively. For the isomers of class B and C, the full lines depict the 
nearest-neighbor relationship for a simple convex polyhedron, projected along a selected direction. This direction is that of the symmetry axis of higher 
order, if there is any. A small circle (O) and a cross (X) depict atoms capping the triangular faces of the polyhedron and located above and below 
the reference plane perpendicular to the selected direction. A small triangle (A) depicts an atom capping a square face of the polyhedron. 

study, structures were intentionally chosen without any specific which is chemically meaningful. The average number of MIDs 
restriction. However, some factors governing the stability of the per atom is half the average coordination number,19 if only 
clusters rapidly emerged; the most obvious is the compactness of first-nearest neighbors are considered as coordinating. The largest 
the structure. The sphericity of the cluster is a possible approach value, six MIDs per atom, is observed for the fee packing of the 
of the compactness. The corresponding index number would be 
the radius of the sphere containing the cluster. This compactness —, ,„ , _ . „, _ "T, r - . _ •——-—: -~. "^rT ~DZ— 
. , , , r . _ . . , , , , , f (19) Desjonqueres, M. C; Spaniaard, D. J. Phys. C: Solid State Phys. 
index number, however, IS not directly related to the number of J982, 15, 4007; 1983, 16, 3389. Thuault-Cytermann, C; Desjonqueres, M. 
individual metal-metal interactions as is the number of MIDs C; Spanjaard, D. J. Phys. O. Solid State Phys. 1983,16,5687. 
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Table III. Calculated Energy Data on Clusters 
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5.9464 
6.6994 
6.7829 
7.8315 
8.3597 
7.8602 
7.8704 
8.2342 
8.0598 
8.1061 
7.6223 
8.3969 
7.8711 
7.3003 
9.6874 
9.6778 
9.3600 
9.6429 
9.356 
9.3554 
9.2206 
9.6996 
9.2504 
9.3525 
9.2747 
9.4827 
9.3842 
9.3256 
9.4587 
9.5942 
9.5970 
9.469 
9.4729 
9.3964 
9.7503 
9.4851 
8.2429 
9.6999 
8.4686 
10.9744 
10.9635 
11.1484 
10.8633 
11.0160 
11.0753 
11.0689 
11.0012 
11.1238 
11.2431 
11.0375 
11.0914 
11.2040 
11.0304 
11.1187 
11.1114 
11.2028 

(EHT + 
SO)/nm 

0.52 
0.52 
0.56 
0.54 
0.50 
0.58 
0.57 
0.49 
0.60 
0.59 
0.57 
0.62 
0.58 
0.58 
0.55 
0.55 
0.57 
0.59 
0.58 
0.66 
0.59 
0.56 
0.56 
0.56 
0.56 
0.56 
0.56 
0.55 
0.54 
0.54 
0.54 
0.56 
0.61 

0.54 
0.54 
0.55 
0.54 
0.55 
0.55 
0.54 
0.54 
0.54 
0.55 
0.55 
0.56 
0.55 
0.55 
0.53 
0.53 
0.53 
0.53 
0.53 
0.52 
0.54 
0.59 
0.69 
0.57 

0.52 
0.52 
0.53 
0.52 
0.52 
0.52 
0.53 
0.52 
0.53 
0.53 
0.53 
0.53 
0.53 
0.525 
0.53 
0.53 
0.56 

%SO 

16.9 
24.4 
18.4 
18.0 
18.0 
30.0 
30.0 
18.0 
25.0 
32.0 
24.0 
23.0 
23.0 
21.0 
22.0 
21.0 
20.0 
19.0 
18.0 
20.0 
20.0 
19.0 
18.0 
18.0 
18.0 
17.0 
17.0 
17.0 
17.0 ( 
17.0 ( 
18.0 
17.0 
16.0 
18.3 
17.0 
16.0 
16.0 ( 
16.0 ( 
16.0 ( 
16.0 
16.0 
16.0 
16.0 
15.0 
17.0 
15.0 ( 
16.0 ( 
15.6 
17.0 
16.0 
16.0 
17.5 
16.0 
16.0 
16.0 
14.0 
17.0 
14.7 
16.9 
15.5 
16.0 
15.0 
16.5 
15.5 
15.6 
15.9 
15.4 
14.8 
14.6 
16.1 
15.3 
18.8 
15.1 
15.0 
16.0 
13.8 

10,2) 
10,3) 
10,5) 
10,8) 
10,9) 
10,11) 
10,12) 
10,13) 
10,14) 
10,16) 
10,19) 
10,21) 
10,23) 
10,24) 
10,27) 
10,31) 
10,33) 
10,34) 
10,35) 
10,36) 
10,37) 
10,38) 
10,39) 
10,40) 
10,41) 

11,1) 
11,2) 
11,3) 
11,4) 

11,5) 
11,6) 
11,7) 
11,8) 

11,9) 
11,10) 
11,11) 
11,12) 
11,13) 
11,14) 
11,15) 
11,16) 
12,1) 
12,2) 
12,3) 
12,4) 
12.5) 
12,6) 
12,7) 
12,8) 
12,9) 
12,10) 

12,11) 
12,12) 

13,1) 
13,2) 
13,3) 
13,4) 
13,5) 
13,8) 
13,14) 
13,18) 
13,19) 
13,21) 
13,23) 
13,25) 
13,29) 
13,30) 
13,33) 
13,34) 
13,35) 
13,36) 
13,37) 
14,1) 
14,2) 
15,1) 
16,1) 

nm no. 
MIDs 

25 
25 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 

>25 
9 
20 
24 
24 

>24 
29 
28 
28 
28 
28 
28 
28 
28 
28 
28 
28 
28 
27 

>27 
25 
10 
33 
32 
32 
32 
32 
30 
30 
30 
31 
28 
30 
11 
36 
36 
36 
36 
36 
35 
35 
35 
35 
35 
35 
35 
35 
35 
12 
35 
30 
20 
33 
40 
36 
44 
48 

EHT 

10.8539 
11.0036 
10.3638 
10.2737 
10.6559 
10.6664 
10.3582 
10.3851 
10.4591 
10.3875 
10.3982 
10.5630 
10.6740 
10.5537 
10.5852 
10.3294 
10.2051 
10.6731 
11.1442 
10.7955 
7.9186 
10.0001 
10.9296 
10.7304 
10.7877 
12.3385 
12.1186 
12.1443 
12.1673 
11.9171 
11.9797 
11.9708 
12.0817 
12.0683 
12.1292 
12.1090 
11.8844 
11.9986 
12.0070 
11.9587 
8.6955 
13.6330 
13.6284 
13.4442 
13.5030 
13.3514 
13.8892 
13.2767 
13.3010 
13.4717 
13.2359 
13.5797 
9.7902 
14.8028 
14.6377 
15.0853 
15.3316 
15.3470 
14.7986 
14.803 
14.7614 
14.6697 
14.9353 
14.9713 
14.4803 
14.6257 
14.5438 
13.7875 
14.9688 
14.6776 
14.8761 
15.035 
16.7992 
16.6744 
18.2273 
19.6206 

EHT/ 
nm 

0.44 
0.44 
0.43 
0.41 
0.44 
0.44 
0.43 
0.43 
0.44 
0.43 
0.43 
0.44 
0.44 
0.44 
0.44 
0.43 
0.425 
0.45 
0.46 
0.43 

0.50 
0.46 
0.45 
0.45 
0.43 
0.43 
0.43 
0.43 
0.43 
0.43 
0.43 
0.43 
0.43 
0.43 
0.43 
0.42 
0.44 
0.44 
0.48 

0.41 
0.43 
0.42 
0.42 
0.42 
0.46 
0.44 
0.44 
0.45 
0.47 
0.45 

0.41 
0.41 
0.42 
0.43 
0.43 
0.42 
0.42 
0.41 
0.42 
0.43 
0.43 
0.41 
0.42 
0.42 

0.43 
0.49 

0.45 
0.42 
0.46 
0.41 
0.41 

EHT + 
SO 

12.7439 
12.8684 
12.2660 
12.207 
12.6234 
12.4982 
12.2145 
12.2781 
12.2432 
12.3291 
12.3093 
12.4510 
12.7275 
12.4938 
12.5188 
12.2987 
12.1416 
12.8519 
12.8963 
12.8306 
9.6333 
11.6949 
12.7985 
12.5912 
12.6459 
14.4639 
14.6269 
14.4673 
14.3019 
14.0815 
14.0815 
14.1201 
14.2011 
14.3165 
14.3184 
14.3674 
14.1882) 
14.1221 
14.1003 
13.7980 
10.5455 
16.0689 
16.2178 
15.9454 
15.9019 
16.0488 
15.8689 
15.6304 
15.5928 
15.6986 
15.5106 
16.0407 
11.8306 
17.5627 
17.6710 
18.1440 
17.7659 
17.7199 
17.7465 
17.6174 
17.5863 
17.5195 
17.6896 
17.8604 
17.3481 
17.3175 
17.3548 
16.0833 
17.5903 
17.478 
17.5134 
17.6164 
19.7304 
19.3196 
21.5580 
23.3886 

(EHT + 
SO)/nm 

0.51 
0.51 
0.51 
0.51 
0.53 
0.52 
0.51 
0.51 
0.51 
0.51 
0.51 
0.52 
0.53 
0.52 
0.52 

0.51 
0.51 
0.54 
0.54 

0.51 

0.585 
0.53 
0.53 
0.53 
0.50 
0.52 
0.52 
0.51 
0.50 
0.50 
0.50 
0.51 
0.51 
0.51 
0.51 
0.51 
0.52 
0.52 
0.55 

0.49 
0.51 
0.50 
0.50 
0.50 
0.53 
0.52 
0.52 
0.52 
0.55 
0.53 

0.49 
0.49 
0.50 
0.49 
0.49 

0.51 
0.50 
0.49 
0.50 
0.505 
0.51 
0.50 
0.50 
0.50 

0.50 
0.58 

0.53 
0.49 
0.54 
0.59 
0.49 

%SO 

14.8 
14.5 
15.5 
15.8 
15.6 
14.7 
15.2 
15.4 
14.6 
15.7 
15.5 
15.2 
16.1 
15.5 
15.5 
16.0 
16.0 
17.0 
13.6 
15.8 
17.8 
14.5 
14.6 
14.8 
14.7 
15.0 
17.0 
16.0 
15.0 
15.0 
15.0 
15.0 
15.0 
16.0 
15.0 
16.0 
16.0 
17.7 
17.4 
15.3 
17.5 
15.2 
16.0 
15.7 
15.1 
16.8 
12.7 
17.7 
10.9 
16.5 
14.6 
15.3 
17.3 
15.7 
17.0 
17.0 
14.0 
13.0 
16.6 
16.0 
16.0 
16.3 
15.6 
16.2 
16.5 
15.5 
16.2 
14.2 
14.9 
16.0 
15.0 
14.6 
14.9 
13.7 
15.5 
16.1 
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Table III I 

(9,18) 
(9,19) 
(9,20) 
(9,21) 
(9,22) 
(9,23) 
(10,1) 

Table IV. 

[Continued) 

nm no. 
MIDs EHT 

8 7.5306 
8 7.1490 

21 9.8003 
21 9.3970 
21 9.3082 
18 9.2059 
25 10.9788 

EHT/ 
nm 

0,94 
0.97 
0.47 
0.44 
0.44 
0.51 
0.44 

EHT + 
SO 

9.4374 
8,7208 

11.4648 
11.0893 
10.9896 
10.6999 
13.0488 

(EHT + 
SO)/nm 

1.18 
1.09 
0.55 
0.53 
0.52 
0.59 
0.52 

%SO 

20.0 
18.0 
14.5 
15.2 
15.3 
13.4 
15.9 

(16,2) 
(17,1) 
(18,1) 
(19,1) 
(19,2) 
(19,3) 

Fermi Levels for the Various Clusters and the Infinite Systems 

(2,1) 
(3,1) 
(4,1) 
(5,4) 
(6,5) 
(7,10) 
(8,21) 
(9,20) 
(10,1) 
(11,1) 
(11,2) 
(12,2) 
(13,3) 
(14,1) 
(15,1) 
(16,1) 
(16,2) 
(17,1) 
(18,1) 
(19,1) 
(19,2) 
(19,3) 
chain Pt6 

chain Pt4 

(100) plane 
1 layer 
2 layers 
3 layers 

(111) plane 
1 layer 
2 layers 

3 fee layers 
3 hep layers 
4 fee layers 
4 hep layers 
4 mix layers 
5 fee layers 
5 hep layers 
6 fee layers 
7 fee layers 
9 fee layers 
fee bulk 
hep bulk 

no. MIDs 
per atom 

0.5 
1.0 
1.5 
1.8 
2.0 

>2.0 
>2.25 

2.33 
2.50 
2.63 
2.55 
2,67 
2,77 
2,86 
2.93 
3.00 
3.00 
3.06 
3.11 
3.16 
3.16 
3,16 
3,00 
3.25 

2.00 
4.00 
4.67 

3.00 
4,50 
5,00 
5.00 
5.25 
5.25 
5.25 
5.40 
5.40 
5.50 
5.57 
5.67 
6.00 
6.00 

Fermi level 
EHT 

-11.996 
-11.994 
-11.994 
-11.934 
-11.949 
-11.888 
-11.861 
-11.855 
-11.761 
-11.694 
-11.754 
-11.708 
-11.674 
-11.689 
-11.652 
-11.633 
-11.633 
-11.621 
-11.606 
-11.708 
-11.628 
-11.592 
-11.646 
-11.549 

-11.860 
-11.553 
-11.408 

-11.828 
-11.421 
-11.276 
-11.308 
-11.241 
-11.269 
-11.237 
-11.256 
-11.244 
-11.266 
-11.230 
-11.216 
-11.199 
-11.196 

nm no. 
MIDs 

48 
52 
56 
60 
60 
60 

EHT/ 
EHT nm 

19.3776 0.40 
21.1846 0.41 
22.9475 0.41 
24.3504 0.41 
24.2362 0.40 
24.3526 0.41 

Fermi level 
EHT + SO 

-11,775 
-11.687 
-11.647 
-11.502 
-11.455 
-11.419 
-11.394 
-11.441 
-11.306 
-11,306 
-11.381 
-11,306 
-11,299 
-11.282 
-11.247 
-11.225 
-11.302 
-11.257 
-11.296 
-11.285 
-11.312 
-11.282 
-11.239 
-10.824 

-11.492 
-11.174 
-11.048 

-11.476 
-11.087 
-11.010 
-11.020 
-10.978 
-10.991 
-11.004 
-10,997 
-10.916 
-10.954 
-10.923 
-10.940 
-10.842 
-10.824 

EHT + 
SO 

23.4364 
25,3252 
27.2200 
29.0034 
29.0407 
29.0249 

(EHT + 
SO)/nm 

0.49 
0.49 
0.49 
0.48 
0.48 
0.48 

"s-3p" 
density 
EHT 

0.12 
0.23 
0.67 
0.61 
0.61 
0.58 
0.57 
0.59 
0,60 
0.57 
0.62 
0.60 
0.63 
0.62 
0.63 
0.64 
0.63 
0.69 
0.73 
0.78 
0.77 
0.77 

0.62 
0.79 
0,88 

0.83 
0.84 
0.94 
0.91 
0.91 
0.92 
0,91 
0.91 
0.91 
0.90 
0.93 
0.94 
0.95 
0.95 

%SO 

17.3 
16.4 
15.7 
16.0 
16.5 
16.1 

metal bulk. In this packing, the most compact crystallographic 
plane is the close-packed triangular lattice (CPTL) with an average 
of three MIDs per atom. A systematic way to generate compact 
clusters is to stack parts of those planes in a parallel way. Since 
this plane exists as well in the fee packing (111) as in the hep 
packing (100), structures corresponding to fee or hep growth as 
well as mixed stacked structures will be generated. These 
structures define an ensemble which we call class A. The dis­
tinction between fee and hep structures starts with the introduction 
of the third CPTL parallel plane. The mixed stackings start with 
the fourth CPTL. 

Another way to analyze the fee and hep stacks is to consider 
them as assemblies of elementary volumes. Indeed, the total 
volume of the fee or hep bulk breaks up into two primitive volumes: 
the tetrahedron Td with six MIDs for four atoms and the square 
pyramid P4 with eight MIDs for five atoms. These primitive 
volumes can fit into structures that do not pertain to class A. They 

define the class B. Polytetrahedra are members of this class. 
Compounds of class B differ from those of class A because they 
do not constitute a cell suitable to fill (by repetition) the whole 
space. 

Some polytetrahedra are quite remarkable. One is the Pt7 

system with four adjacent tetrahedra that have two atoms in 
common. This structure is highly compact because the volume 
built from the four tetrahedra contains a hole into which nearly 
fits the volume of an extra tetrahedron. The equatorial platinum 
ring is a distorted pentagon with one side 1.257 times longer than 
the others. A small elongation of the common edge (by a factor 
of 1.05) leads to the regular pentagonal bipyramid. Other no­
ticeable polytetrahedra are the Pt13 systems with 10 adjacent 
tetrahedra having one atom in common. These structures may 
be distorted, yielding an icosahedron that is composed of 20 
nonregular tetrahedra with a common atom. This distortion 
requires an elongation of the external bond lengths by a factor 
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of 1.05 as for the Pt7 structure. 
These examples show that a third class, named class C, has to 

be defined. It gathers compact structures involving some ele­
mentary volumes other than Td and P4. We select these structures 
on symmetry considerations. These volumes are the pentagonal 
pyramid P5, the trigonal prism (10 and 9 MIDs, respectively, for 
six atoms), the pentagonal antiprism (20 MIDs for 10 atoms), 
and the icosahedra with 12 or with 13 atoms. 

The consideration of structures of class B and C allows ex­
ploration of some ways of nucleation different than the normal 
fee or hep metallic growth. 

In the next section, the various calculated clusters Ptn will be 
presented according to the value of n (n = 2-13,14-«). The above 
classification (A, B, C) will be used. Results involve both the 
simple EHT and the EHT + SO methods. 

4. Comparison of the Ptn Isomers 

In the first part of this section, the value of the MID has been 
fixed to 2.77 A. Variations of the MIDs will be examined later 
for a few isomers. The selected compounds for this optimization 
are those for which a small difference exists between the first-
nearest-neighbor distance (the 2.77-A MID) and the smallest 
second-nearest-neighbor distance. All structures are shown in 
Figure 1. 

Pt1. It is established that the most stable spectroscopic state 
of the R atom is the 3D3 state ((5d)9(6s)')- It is quasi-degenerate 
with the 3F4 state ((5d)8(6s)2) (+0.1 eV). Next, the IS0 (d10) 
state comes (+0.76 eV above the 3D3 state). The EHT technique 
is inadequate to reproduce these features: the usual parameters 
place the 6s atomic orbital at 2.59 eV above the 5d level, whatever 
the electronic configuration may be. Then, in the following 
discussions, the d10 configuration will be considered as the reference 
state, even if it is clear that it is not a correct description of the 
isolated atom. 

Spin-orbit coupling splits the energetically degenerate d spin 
orbitals of the platinum atom (-12.59 eV) into two subsets of four 
spin orbitals at -13.53 eV and of six spin orbitals at -11.97 eV 
associated with / = 5/2 and J = 3/2, respectively. However, the 
SO interaction has no effect on the total energy since, for a d'° 
configuration, the mean values of the operators L2, S2, and LS 
are equal to zero. Due to the generation of a stabilized set of four 
spin orbitals for the atom, the influence of the spin-orbit coupling 
is maximum for a d4 configuration (such as the hafnium atom) 
while it is zero for a dic configuration, such as the neutral platinum 
atom. Following this simple analysis when atoms interact to form 
clusters, the influence of the spin-orbit coupling enhances the 
cohesive energy of the Ptn structures while it reduces that of the 
Hfn structures. For the platinum systems, the stabilization due 
to SO coupling increases with the depopulation of the d set of 
orbitals and the subsequent population of the s-p set. 

Pt2. The EHT description of Pt2 induces a mixing between s, 
p, and d atomic orbitals. The results can be considered as a 
symmetrical electronic transfer from the d orbitals of one atom 
to the (s, p) orbitals of the other. It is equivalent to a polarization 
effect on each center.20 This effect corresponds to a formal d(10 
- x) sp(x) atomic configuration with x = 0.12 (Table IV). It is 
worth noting that the depopulation of the d orbitals affects mainly 
their in-phase combinations (because of their mixing with the 
in-phase s MO of low energy) and leads subsequently to a partly 
occupied d system with an antibonding character. The bonding 
character between the two atoms is assumed mainly by the in-
phase overlap between the s-p orbitals of one atom with the d 
orbitals of the other. Indeed, the total overlap population matrix 
(0.156) splits into a major sp-d in-phase contribution (0.171) 
corrected by a minor out-of-phase d-d term (-0.016). the in­
fluence of the sp-sp overlap population is negligible (0.001). 

An energy lowering of 0.43 eV results from these interactions 

^20T^ehro"tr^PlC;"Hoffnmnn7R. InorgTchem. 1978,7772187." Dedieu, 
A.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 2074. See also: Jordan, K. 
D.; Simons, J. J. Chem. Phys. 1976, 65, 1601. 

(21) Cyrot-Lackmann, F. J. Phys. 1970, Cl, 67. Gaspard, J. P.; Cyrot-
Lackmann, F.; Gordon, M. B. J. Phys. 1977, C2, 57. Gordon, M. B.; Cy­
rot-Lackmann, F.; Desjonqueres, M. C. SuYf. ScL 1979, 80, 159. 

at the simple EHT level (Table III). As the atoms no longer have 
a d10 configuration, the spin-orbit coupling induces an extra 
stabilization of 0.088 eV. It represents 17% of the total stabi­
lization energy. 

Pt3. The class A of the Pt3 clusters has one structure with three 
MIDs, the equilateral triangle (3,1), and three structures with 
two MlDs, the 90° and 120° triangles (3,2) and (3,3) respectively, 
and the linear structure (3,4). These three structures can be 
considered as resulting from a continuous distortion of one bond 
of the structure (3,1). 

As in Pt2, the bonds come from the sp-d interaction between 
two centers. Since the overlap decreases rapidly with the distance, 
the structure (3,1) with the largest number of MIDs is the most 
stable (Table III). The total stabilization energy, compared with 
3Pt, is 1.56 eV. The mean cohesive energies per MID are in the 
range of those observed for Pt2 (0.52 eV), although (3,2) has a 
slightly larger value (0.56 eV). This result shows that, to a first 
approximation, the number of MIDs can be a useful guide to 
foresee the total cohesive energy of a new cluster. The overlap 
population per atom of (3,1) is 0.150. It is close to the value found 
for R 2 (0.156) and is similarly split into an sp-d dominant in-phase 
contribution (0.154) and smaller out-of-phase d-d (-0.018) and 
in-phase sp-sp (0.014) terms. The action of the spin-orbit coupling 
induces an extra stabilization energy of 0.40 eV (25% of the total 
bonding energy) for (3,1). This larger percentage for Pt3 than 
for Pt2 is associated with the increase in the "sp" population (see 
Table IV). The lengthening of a Pt-Pt distance in going from 
(3,1) to (3,4) is associated with a regular decrease of the cohesive 
energies (from 1.16 to 0.82 eV at the simple EHT level and from 
1.56 to 1.00 eV at the EHT + SO level). 

Pt4. The structures of Pt4 of class A and built from the 
matching of two parallel CPTLs are the tetrahedron (4,1) with 
six MIDs (the largest number of MIDs of the R4 series), the folded 
rhombus (4,5), and the square (4,4) with five and four MIDs, 
respectively. The structures of class A derived from a unique 
CPTL include the planar rhombus (4,2) with five MIDs and the 
linear chain (4,3) with three MIDs. As in the Pt3 series, the order 
of stability of the various calculated clusters corresponds to the 
increasing order of the number of MIDs (Table III); the most 
compact tetrahedron structure (4,1) comes first then (4,5), (4,2), 
(4,4), and (4,3). Except for (4,3) which has a value similar to 
the linear structure (3,4), the mean cohesive energy per MID is 
roughly a constant within the Pt4 series as in the Pt2-Pt3 ensemble. 
This mean value increases slightly (from 0.52 to 0.58 eV) from 
the first series to the present one. In the Pt4 series, a detailed 
analysis of the EHT results reveals, despite the uniform cohesive 
energy per MIDs, a discontinuity in the overlap populations: 
structures (4,1) and (4,5) exhibit large mean values (0.251 and 
0.225, respectively) whereas the square (4,4) has a value (0.169) 
close to the ones found in the series Pt2 and Pt3. The value of 
(4,4) comes from the usual dominant sp-d out-of-phase term 
(0.164) corrected by the smaller sp-sp in-phase (0.018) and d-d 
out-of-phase (-0.013) terms. The values for (4,1) and (4,5) split 
a completely different way. Indeed, there is a large sp-sp in-phase 
contribution (0.126 and 0.115, respectively), a reduced sp-d in-
phase term (0.106 and 0.100, respectively), and a small, but now 
in-phase, d-d contribution (0.019 and 0.010, respectively). A 
noticeable discontinuity in the sp electronic density corresponds 
to this discontinuity in the overlap population. The value for the 
square (4,4) is small (0.266) and close to the Pt3 value (0.228) 
while for the tetrahedron (4,1) and the folded rhombus (4,5), it 
rises up to 0.666 and 0.649, respectively. The continuity in the 
energetics and the discontinuity in the overlap population can be 
easily understood by analyzing the properties of the various 
molecular orbitals. The orbitals of the square (4,4) are split into 
two blocks as was the case for the Pt2-Pt3 clusters. The block 
of lowest energy is mainly built from mixing the d atomic orbitals. 
The upper block is built from the interaction of sp atomic orbitals. 
A small mixing between the two blocks occurs via the sp-d in­
teraction. As expected, this interaction is stabilizing for the lower 
d block and destabilizing for the upper sp block. This net block 
separation is abolished for the tetrahedron and the folded rhombus 
as it will be for larger systems: the energy gap between the d block 
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and the sp block is progressively reduced as the size of the cluster 
increases. The Pt4 series is the vanishing point. For the large 
clusters, the lowest sp level (mainly an in-phase combination of 
the s orbitals) is energetically lowered enough to pass below the 
highest antibonding d molecular orbital. This fact changes 
drastically the overlap population; the sp-d term is decreased 
sharply since an interblock out-of-phase mixing (the lowest orbital 
of the former sp block) replaces an interblock in-phase mixing 
(the highest orbital of the former d block). The two other terms 
(d-d) and (sp-sp) are relative to the intrablock phase relationship. 
Their values sharply change since the most bonding sp orbital is 
filled while the most antibonding d orbital is emptied. Since the 
s-s overlap at the MID is 3.8 times larger (0.176) than the best 
d-d overlap (0.046), a large s-s contribution to the overlap 
population is observed. The orbital interchange situation corre­
sponds to the overlapping of the s and d bands in the language 
of solid-state physics. Henceforth, the position of the Fermi level 
is inside the d band for the compact clusters larger than Pt4. The 
analysis of the total EHT + SO energy reveals the discontinuity 
in the overlap population. Indeed, the change in the relative SO 
contribution (30% vs. 18-25%) is associated with the change in 
the sp population which results from the orbital exchange phe­
nomenon. It is interesting to note that the structures (4,1) and 
(4,5) have both the largest SO contributions of all the considered 
clusters and a large sp population which compares with that of 
much larger clusters (see Table IV). The above analysis of the 
Pt4 cohesive energy does not change the conclusion on the relation 
between the optimal stability of the clusters and the maximum 
number of MIDs. 

For the tetrahedron, as well as for many highly symmetric 
clusters, the highest d orbital belongs to a degenerate set. It is 
a Jahn-Teller situation, and a molecular distortion is expected 
to occur. This geometrical distortion should be small since any 
symmetry-breaking geometry change affects the sp-sp overlap 
more significantly than the d-d overlap. Consequently the energy 
of the highly stabilizing sp orbitals is affected more than that of 
the d orbitals. Thus, any deformation which removes the d orbital 
degeneracy will greatly reduce the stability of the whole system, 
forcing it to remain in a high spin state. The stability of the 
clusters with a zero gap between the frontier orbitals inducing 
a Jahn-Teller situation is a noteworthy exception to the Lauher 
rule.3a This exception may be a consequence of the unsaturated 
aspect of the pure platinum clusters. 

Pt5. Trapezium (5,1) with seven MIDs is the most compact 
Pt5 planar structure. It is clear that it does not represent a stable 
species since it can lead to more compact structures, for example 
(5,2) or (5,4), by simple deformations which do not involve any 
bond breaking. Among the structures built from two CPTLs, the 
3 + 2 possible arrangements gives two clusters with eight MIDs: 
the square pyramid P4 (5,2) and an edged capped tetrahedron (5,3) 
which is also equivalent to a 4 + 1 arrangement as shown on Figure 
1. This structure has not been calculated because it can be 
monotonously transformed into the trigonal bipyramid (5,4). 
Structure (5,4) is a 1 + 3 + 1 arrangement involving three CPTLs. 
It has nine MIDs, the largest number of the Pt5 series. It has 
hep packing and is the first polytetrahedron obtained by capping 
a triangular face of the tetrahedral structure (4,1). This capping 
leads to a gain of three MIDs for the new cluster. This gain is 
a general property in the generation of a Pt„ structure by ag­
gregation of a single atom to a Pt„_, cluster with external triangular 
faces. 

Within class C, only the planar Dih structure (5,5) has been 
calculated. With five MIDs, it has the smallest cohesive energy 
of all the structures considered in the Pt5 series, as expected. 

The energy of stabilization per MID in the Pt5 series is, on the 
average, similar to what is observed in the Pt4 series (approximately 
0.58 eV per MID), except for the structure (5,2) which shows 
an extremum (0.62 eV). (5,2) is an example to what will be 
observed for other clusters presenting external square faces, i.e., 
high values of mean cohesive energy per MID. 

Compared to the situation of the best Pt4 clusters, the relative 
contribution of the SO coupling is reduced for the Pt5 series. The 

origin of this reduction can be found in the decrease of the mean 
sp population (0.61 electron) relative to that of the best Pt4 

compounds (0.67 electron) and to the increase of local geometrical 
constraints which prevent optimal splitting of the orbital levels. 

Pt6. Let us first consider the Pt6 isomers of class A. Three 
planar structures with nine MIDs can be generated. They are 
the equilateral triangle (6,1), the parallepiped (6,2), and the 
two-nested rhombi structure (6,3). From two CPTLs, a 3 + 3 
arrangement generates the monoclinic trigonal prism or capped 
P4 (6,4) with 11 MIDs and the octahedron (6,5) with 12 MIDs. 
These clusters are also 2 + 4 and 1 + 4 + 1 arrangements involving 
two and three CPTLs, respectively. Structure (6,5) can be con­
sidered as built from two P4 with a common square face or as a 
triangular antiprism. In the latter sense, it initiates the series of 
antiprismatic structures of class C that we will consider for the 
larger clusters. For the first time, a compound of class B exists. 
It is the polytetrahedron (6,8) with 12 MIDs. It is built from three 
adjacent polytetrahedra sharing a common edge. Class C includes 
the trigonal prism (6,6) with nine MIDs and the pentagonal 
pyramid P5 (6,7) with 10 MIDs. 

The octahedron (6,5) is found to be the most stable system of 
the Pt6 series, for which the order of stability is in agreement with 
the order of the mean coordination numbers (see Table III). To 
illustrate this point, let us consider (6,5) and (6,8). Structure (6,5) 
comes first and structure (6,8) in second position. Both structures 
have the maximum number of MIDs (i.e., 12), but they differ 
by the distances between their second-nearest neighbors. Indeed, 
for clusters of class A, the second-nearest neighbors are located 
at a distance 1.414 times larger than the MID, while for (6,8) 
the factors are 1.633 and 1.667. The lengthening of the 2.77-A 
interatomic distance by factors 1.414 and 1.633 corresponds to 
a 64% and 98% decrease of the s-s overlap, respectively. Since 
the interaction energy is roughly proportional to the square of the 
overlap, it can be estimated that the extra stabilization energy 
brought by the second nearest neighbors is insignificant for (6,8) 
but is equivalent to 13% of the mean energy stabilization per MID 
for each of the three second-nearest-neighbor distances of (6,5). 
The calculated results (Table III) agree with these elementary 
considerations. 

The sphericity of the octahedron (6,5) may also explain its high 
stability. Indeed, it fits within a small sphere of radius 1.96 A. 
In a similar way, the exceptional stability of the tetrahedron (4,1) 
may be related to the small radius (1.70 A) of its spherical en­
velope. It is worth noting that these two remarkably stable clusters 
are compact from both the point of view of the spherical density 
and the number of MIDs. No Pt5 cluster matches both criteria 
simultaneously. Indeed, the Pt5 cluster (5,4) with the maximum 
number (nine) of MIDs has a flattened shape which requires a 
large sphere of radius 2.26 A while the Pt5 cluster (5,2) with the 
largest spherical density (it fits within the sphere of (6,5)) has 
only eight MIDs. For this example, the highest number of MIDs 
has more influence on the cluster stability than the spherical 
density. 

It is worth noting that the trigonal prism (6,6) has a stabilization 
energy significantly larger than would be expected by considering 
only its number of MIDs. Indeed, its cohesive energy per MID 
is 0.66 eV, while it is approximately 0.58 eV for the other 
structures as in the case of the clusters of the Pt4 and Pt5 series. 
This exceptional stabilization at the EHT level is a new example 
for the efficiency of sphericity (the sphere radius is small, 2.16 
A) and for the presence of external square faces. 

For the Pt6 series, the relative spin-orbit coupling contribution 
to the total cohesive energy is approximately 20%. The decrease 
compared with the preceding series comes from the increase in 
the local geometrical constraints for an identical or smaller d 
depopulation (see Table IV). 

Pt7. The centered hexagon (7,1) is derived from the planar 
structure (6,3) by addition of a Pt atom bonded by three MIDs. 
It is the first example of such an increase in the number of MIDs 
for the development of a planar structure. In fact, it is the usual 
step for the enlargement of a planar two-dimensional sheet of 
parallel atomic rows, except for the initiation of a new row, that 
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implies a gain of two MIDs. The fact that the gain of 3 MIDs 
per added atom has been shown to be a permanent possibility for 
the growth of any nonplanar cluster confirms the trivial conclusion 
that the compactness of a planar structure, and thus its stability, 
can never compete with that of the nonplanar isomers. 

The consideration of all possible compact structures for clusters 
larger than Pt6 would represent a tedious task. Thus, from now 
on, we will only consider the structures of class A with the 
maximum number of MIDs or with one MID less. Thus the Pt7 

structures examined in our study have 15 and 14 MIDs. The fit 
of two CPTLs with a 5 + 2 distribution gives the cluster (7,2), 
a bicapped P4. The 4 + 3 distribution gives (7,3), the capped 
octahedron, and (7,4), another bicapped P4. Only the (7,3) 
structure has 15 MIDs. The fit of three CPTLs with a 2 + 4 + 
1 distribution gives an hep derived structure (7,5). In class B, 
there are three polytetrahedra, (7,6), (7,7), and (7,8), which all 
have 15 MIDs. The n polytetrahedra can be generated from the 
n - 1 polytetrahedra by capping one of their triangular faces. This 
procedure cannot generate two extra tetrahedra in a single step 
since an atom cannot cap simultaneously two triangular faces 
belonging to two distinct tetrahedra. So, the capping of (6,8) to 
give (7,6) does not generate two regular tetrahedra but only one 
(the remaining cavity is a distorted tetrahedra with a distance 
equal to the 1.09 times the MID value). Therefore, the steps of 
the growth of the polytetrahedra are all similar. They add three 
MIDs to the (n - 1) cluster. The formula 3(n - 2) gives the 
numbers of MIDs of the Pt„ polytetrahedra. That shows that the 
polytetrahedron series converges toward the same number of MIDs 
per atom as in the infinite planar sheet. However, the convergence 
is faster in the first case than in the second. In three dimensions, 
the maximum number of first nearest neighbors is 12.22 This 
imposes a convergence to 6 for the number of MIDs per atom. 
This value is reached for the fee or hep bulk metals. Polytetra-
hedral growth is therefore not competitive. 

Besides the polytetrahedra, another cluster, (7,9), belongs to 
class B. This cluster results from the sharing of a common face 
by a square pyramid (5,2) and a triangular bipyramid (5,4). Class 
C contains the Dsh bipyramid (7,10), which can be considered as 
resulting from a distortion of the polytetrahedron (7,6) by 
lengthening the edge common to its four tetrahedra. Class C also 
contains structure (7,11), derived from structure (6,8), by capping 
a square face of the trigonal prism. Structure (7,10) is a building 
block of the icosahedron Pt13 structure (13,33). Stricktly speaking, 
it has 15 MIDs, but the distance between the two apical atoms 
is 1.05 times the MID value. This distance may be counted 
approximately as an extra MID and makes (7,10) the most 
compact Pt7 structure. The calculated energies show that (7,10) 
is the most stable structure and precedes (7,3) and the polytet­
rahedra, all with 15 MIDs (see Table III). The fact that the 
polytetrahedra are all less stable than the compounds of class A 
with the same number of MIDs can be related to the second 
nearest neighbor distances. They are larger for the polytetrahedra 
(except for one distance in (7,6)) than for the structures of class 
A. In the first case, the ratio with the MID is 1.633 while it is 
1.414 in the second one. The consideration of repulsion for (7,10), 
as will be shown below, leads to an optimal geometry quasi-
identical with the one described above with the usual minimal 
distance. 

Within the Pt7 series, the mean cohesive energy per MID is 
approximately 0.56 eV for all isomers, except for (7,11), which 
has a value of 0.66 eV. This isomer with only 13 MIDs has a 
cohesive energy larger than that of any isomer with 14 MIDs. 
Again, this exceptional cohesion can be related to the square open 
faces and to the sphericity (the sphere radius is 2.28 A). 

The mean value of the SO contribution decreases compared 
with the Pt6 series, reaching 17%. The origin of this evolution 
is identical with that mentioned for the Pt5-Pt6 series. 

Pt8. The most compact Pt8 structures have 18 MIDs. The fit 
of two CPTLs with a 4 + 4 distribution gives the three structures 
(8,1), (8,2), and (8,3). They can be considered as the matching 

(22) Zemann, J. Inorg. Chem. 1963, 324, 241. 

of two rhombi Pt4 structures (4,2). Structures (8,1) and (8,2) 
have the maximum number of MIDs and represent bicapped 
octahedra Oh. Structure (8,3) has a MID less and is made of 2P4 

+ 27V The 5 + 3 distribution gives the structures (8,4), (8,5), 
and (8,6), which are made of Oh + 27V, and (8,7), which is made 
of P4 + 37V Only (8,4) has the maximum number of MIDs. 

Let us now consider the various arrangements of three CPTLs. 
All the new structures are of the hep type. The 3 + 4 + 1 
distribution gives only the structure (8,4) already found. The 4 
+ 3 + 1 distribution gives, in addition to (8,2), (8,6), and (8,7), 
three new hep structures: (8,8), (8,9), and (8,10). Only the first 
one has 18 MIDs and is a bicapped octahedron Oh. The distri­
bution 2 + 5 + 1 gives (8,11) made of P4 + 37V, in addition to 
(8,7) already described; the distribution 3 + 3 + 2 gives (8,12) 
made of Oh + P4 and the 2 + 4 + 2 distribution gives, in addition 
to the structures (8,3) and (8,5) already found, (8,13) and (8,14) 
made of 2P4 + 2Td. 

In class B, we have the six possible polytetrahedra labeled 
(8,15)—(8,20). (8,15) has a Td symmetry and is an all-capped 
tetrahedron. (8,17) and (8,18) can be considered as structures 
resulting from a distortion of the structure (8,21). 

In class C, the structure (8,21) is derived from the Dih bi­
pyramid (7,10) by capping one of its triangular faces. It has 18 
MIDs. Structure (8,22) is a square antiprism and has only 16 
MIDs while the cube (8,23) has 12. Structure (8,24) with 17 
MIDs is derived from the trigonal prism (6,6) by capping two of 
its three square faces. 

Within the Pt8 series, the order of stability does not strictly 
follow the order of compactness. Some structures with 17 and 
even 16 MIDs such as (8,24), (8,12), or (8,22) are more stable 
than structures with 18 MIDs. (8,21), the most compact structure, 
comes first at the EHT + SO level, but, surprisingly, the structure 
(8,24) with only 17 MIDs is the most stable cluster at the EHT 
level and remains quasi-degenerated with (8,21) after consideration 
of the SO coupling. (8,22) with only 16 MIDs and (8,24) with 
17 MIDs have particularly high spherical density. Both structures 
have high cohesive energies per MID but small relative SO 
contributions. The presence of square open faces, existing in (8,24) 
as well as in (8,22), is well suited to generate a strong metal-metal 
bond at the EHT level as already mentioned. Both clusters (8,24) 
and (8,22) have larger overlap populations (0.1876) compared 
with the values of other clusters with the same number of MIDs 
or more (for example, (8,1) with 18 MIDs has a value of 0.165). 
This difference is mainly due to a larger sp-d in-phase mixing 
associated to the favorable local symmetry. The SO coupling acts 
as a local symmetry breaker and prevents this local symmetry from 
being fully effective at the EHT + SO level. Structures (8,10) 
and (8,12), which have external square faces, are other examples 
of clusters with relatively large cohesive energies at the EHT level 
but a small SO contribution at the EHT + SO level. 

The polytetrahedra (class B) are less stable than the clusters 
of class A with the same number of MIDs. This can be explained 
by the second-neighbor interaction as in the case of Pt7. 

The cube (8,23) has a large mean cohesive energy per MID. 
This result can be attributed to the 12 second neighbor interactions 
at 1.414 times the distance of the MID as for (6,5). 

For the first time, the cohesive energy of the six most stable 
isomers is within 0.10 eV. This result points out that, for the large 
clusters, it is not really possible to speak about the most stable 
cluster but about a quasi-degenerate ensemble. 

Pt9. Clusters of the Pt8 series with 18 MIDs do not possess 
an external square face which can be capped to generate a compact 
Pt9 cluster with 22 MIDs. They have only triangular faces. Their 
capping leads to Pt9 clusters with a maximum number of 21 MIDs. 
Among the Pt9 isomers of class A, only the structures with 21 
MIDs will be considered. The fit of two CPTLs with a 5 + 4 
distribution gives three clusters: (9,1), (9,2), and (9,3). The first 
two are tricapped octahedra, but the last one is Oh + P4 + Td and 
has an external square face. The 5 + 3 distribution gives the 
structure (9,4), another tricapped Oh. The fit of three CPTLs 
with the 5 + 3 + 1 distribution gives (9,4), a structure already 
considered, while the 3 + 5 + 1 distribution gives (9,5) in addition 
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to (9,1). Structure (9,5) is made of Oh + lTd. Structure (9,6) 
is made of 2P4 + ATd and results from a 2 + 5 + 2 distribution. 
The 1 + 4 + 4 distribution generates (9,7) and (9,8), in addition 
to structures (9,1) and (9,2) already found. The 3 + 4 + 2 
distribution gives (9,9) in addition to (9,3) and the 3 + 3 + 3 
distribution generates (9,10). Structures (9,7) and (9,8) are made 
of Oh + lTd, (9,9) is made of Oh + P4 + 2Td, and (9,10) is made 
of two Oh sharing a common face. The 1 + 4 + 3 + 1 distribution 
of four CPTLs gives a mixed-stacked structure (9,11) in addition 
to the hep structure (9,2). Structure (9,10) has the lower energy 
among clusters of class A. 

Class B contains 16 polytetrahedra which all have 21 MIDs. 
(9.21) and (9,22) have been computed as representative of this 
series. 

Let us now consider structures of the class C. Five structures 
derived from (8,21) by capping two triangular faces of (7,10) can 
be generated. They are numbered (9,12)—(9,16); (9,13) is the 
most compact isomer. It is very close to a structure (9,13'), made 
of two irregular nested pentagonal bipyramids, which has a lower 
energy than (9,13). The structure (9,13') has two short second-
nearest-neighbor distances which, if included in the MID count, 
lead to 23 MIDs. Its cohesive energy is among the best for Pt9 

clusters. The structure (9,17) is derived from the square antiprism 
(8.22) by capping one of its square faces. It has 20 MIDs. The 
centered cube (9,18) has only eight MIDs, all involving the 
common central atom. This structure has a very small cohesive 
energy, associated with a large SO contribution (the local con­
straints are weak). Structure (9,19) can be considered as derived 
from the icosahedron (13,33) by removing four adjacent external 
atoms. This structure is very close to (9,13) and to the poly-
tetrahedron (9,21); nevertheless, both structures are found to be 
less stable than (9,13'). Structure (9,20) is the most compact 
structure in the series initiated with the trigonal prism (6,6). It 
can also be considered as resulting from a distortion of the best 
structure of class A, (9,10). It is the most stable isomer of all 
the Pt9 clusters. 

It is striking that the monocapped square antiprism (9,17) with 
only 20 MIDs is more stable at the EHT level than all the 
structures with 21 MIDs except (9,20). After inclusion of the 
SO coupling interaction, its relative stability decreases and it is 
less stable than (9,10) and (9,13'). The structures (9,20) and 
(9,10) exhibit a good sphericity since they fit within spheres of 
small radius (2.56 and 2.77 A, respectively). A cluster, (9,23), 
fits in a sphere of a even smaller radius (2.40 A). This structure 
is an intermediate on the way from (9,10) to (9,20). It only has 
18 MIDs and is found to be less stable than both structures (9,10) 
and (9,20). This result shows that compactness defined by the 
number of MID prevails over that defined by the spherical density 
for the stability of these clusters. 

Except for (9,17) and (9,20), the mean cohesive energy per MID 
is quite constant within the Pt9 series (0.53 eV). This value fits 
with the slow decrease observed in the other series when the cluster 
size increases. 

Pt10. Three Pt9 clusters, (9,3), (9,6), and (9,9), have 21 MIDs 
and external square faces. Their capping leads to the Pt10 clusters 
with 25 MIDs. For example, the structure (10,1) is derived from 
(9,3) and the structure (10,3) from (9,9). Other aggregations 
of a single platinum to Pt9 clusters can lead to an increase of four 
MIDs. For example, when the Pt9 cluster has two external tri­
angular faces that form an incomplete trigonal bipyramid (5,4) 
with a missing equatorial vertex, the filling of this position leads 
to an increase of four MIDs. The clusters (9,9) (one possibility) 
and (9,10) (three possibilities) illustrate this case and lead to the 
structures (10,2) and (10,3), respectively, in this way. The growth 
from (9,5) to (10,2) is another example of an increase of four 
MIDs. No other cluster of class A has 25 MIDs, but the clusters 
with 24 MIDs are numerous. The fit of two parallel CPTLs with 
a 5 + 5 distribution generates four clusters from (10,4) to (10,7), 
in addition to (10,1) already found. The 6 + 4 distribution 
generates (10,6) and three new structures: (10,8), (10,9), and 
(10,10). The 7 + 3 distribution leads to (10,11). The fit of three 
CPTLs with a 3 + 6 + 1 distribution generates the fee cluster 

(10,12) and the hep cluster (10,13). The 4 + 5 + 1 distribution 
gives, besides (10,6), (10,9), and (10,10), the fee cluster (10,14) 
and four hep clusters from (10,15) to (10,18). The 5 + 4 + 1 
distribution generates two hep clusters, (10,19) and (10,20), in 
addition to the clusters (10,4), (10,8), and (10,12) already found. 
The 3 + 5 + 2 distribution gives structures already generated in 
some other way: (10,2), (10,7), (10,9), (10,10), (10,11), and a 
new hep structure (10,21). The 3 + 4 + 3 distribution gives the 
hep structure (10,22) besides (10,3). The 5 + 3 + 2 distribution 
generates another hep structure, (10,23), while finally the 4 + 
4 + 2 trilayer generates three hep structures, (10,24), (10,25), 
and (10,26), in addition to (10,6), (10,7), and (10,10). 

The fit of four CPTLs gives some Pt10 clusters with 24 MIDs. 
The 1 + 4 + 4 + 1 distribution gives (10,4), (10,5), and four new 
clusters from (10,27) to (10,30). The 1 + 5 + 3 + 1 distribution 
gives (10,31) and (10,8), the distribution 1 + 3 + 4 + 1 gives 
(10,32), (10,33), and (10,6), and the distribution 1 + 3 + 3 + 
3 gives (10,34). All the new clusters generated from four CPTLs 
are mixed-stacked structures except (10,27) and (10,30), which 
are hep. 

Numerous polytetrahedra can be generated and constitute 
elements of class B. They have 24 MIDs. It is the first time these 
clusters have less MIDs than the best structures of class A. Since 
they were significantly less stable with an equal number of MIDs, 
they will not be considered in detail for the Pt10 series. 

Class C has a D4d structure (10,35), which is derived from the 
square antiprism (8,22) by capping its two square faces. It has 
24 MIDs. In class C, there are also (10,36) and (10,37), which 
can be considered as built either from the Dih bipyramid and 
various polytetrahedra or from two or three nested irregular 
pentagonal bipyramids in a similar way as in (9,13'). Structure 
(10,37) is also derived from the icosahedron (13,33) by removing 
three adjacent external atoms. Those two last structures have 
26 and 27 distances, respectively, which are of the order of the 
MIDs (between 2.77 and 2.92 A). The Dsd antiprism (10,38) 
represents a new element in the series of the antiprismatic volumes. 
It can be considered as derived from the icosahedron with 12 
platinum atoms (12,6) by removing two opposite atoms. The 
elimination of two opposite atoms from (12,6) is probably not the 
best choice to generate a Pt10 cluster since it removes 10 MIDs 
in a single step while the removal of two adjacent atoms would 
only remove 9 MIDs. However, such a process generates a large 
cavity in the cluster which prevents it from being a stable species. 
Structure (10,39) results from the capping of a triangular face 
of (9,20), the trigonal prism with all its square faces capped. 

Among the 31 structures of class A with 24 MIDs, the com­
puted values of 14 isomers are reported as representative of the 
main types of stacking (hep, fee, bilayers, trilayers, etc). These 
calculations show no clear-cut energetic distinction between the 
hep and fee clusters of the Pt10 series. When the structures of 
class A are compared at the EHT level, it is observed that all the 
structures with 24 MIDs are less stable than the structures with 
25 MIDs. This order is no longer correct at the EHT + SO level 
since (10,34) precedes two clusters with 25 MIDs. At the EHT 
level, two structures of class C show a peculiar stability. They 
are the bicapped square antiprism (10,35) and the nearly fully 
capped trigonal prism (10,39), both with 24 MIDs. This last 
compound may be considered as resulting from a distorsion of 
(10,34) similar to the one discussed for (9,10) and (9,20). These 
structures fit in small spheres of radii (2.85 and 3.12 A), and their 
stability is larger than expected by considering only their number 
of MIDs. Indeed, (10,35) is the most stable structure at the EHT 
level while (10,39) reaches an energy comparable to the energy 
of the best compounds of class A. The influence of the SO 
coupling changes the relative energies making these two com­
pounds less stable than (10,1), the most stable structure at the 
EHT + SO level. After the (10,1) isomer, comes the bicapped 
antiprism (10,35) then the class A isomer (10,3) and the mixed 
stack (10,34), which, with 24 MIDs, is more stable than the 
structures (10,2), (10,36), and (10,39) with 25 MIDs. 

Pt11. Addition of a platinum atom to clusters (10,2) and (10,3) 
increases the number of MIDs by four to give an hep-type 
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structure (11,1) with 29 MIDs. It is the only cluster of type A 
that contains 29 MIDs. Eleven clusters with 28 MIDs may be 
generated by the superposition of CPTLs: the 6 + 5 arrangement 
leads to (11,2) and (11,3), and the 7 + 4 arrangement leads to 
(11,4). From three CPTLs, the 2 + 6 + 3 sequence leads to an 
hep structure (11,5); in addition to (11,1), (11,3), and (11,4), the 
3 + 5 + 3 sequence generates the structure (11,8), while the 4 
+ 4 + 3 sequence generates, besides (11,2) and (11,3) already 
considered, two hep structures (11,9) and (11,10); the 5 + 5 + 
1 sequence gives (11,3) and an hep structure (11,11). The four 
CPTLs superposition gives (11,2) from the 1 + 3 + 4 + 3 sequence 
and a mixed-stacked structure (11,12) by using a 1 + 3 + 5 + 
2 sequence. 

The polytetrahedra for Pt n have only 27 MIDs. They are less 
compact than clusters considered in class A. The structure (11,13) 
has been computed as representative of this group of clusters. 
Structure (11,14) is derived from (7,10) by capping four triangular 
faces. 

Class C includes a structure (11,15) derived from icosahedron 
(12.6) by removing one platinum and a structure (11,16) derived 
from the icoshedron (13,33) by removing two platinums. The first 
one has 25 MIDs and the second only 10. They have small 
cohesive energies compared to the other structures considered. 
The most stable cluster at the EHT level is (11,1), i.e., the cluster 
with the largest number of MIDs. At the EHT + SO level, this 
cluster is relegated to the third place, after (11,2) and (11,3). The 
origin of this inversion can be found from the fact that (11,1) is 
a trilayer cluster while (11,2) and (11,3) are bilayers having 
reduced local geometrical constraints, favoring the SO coupling. 
Furthermore, (11,2) and (11,3) have larger "sp" densities than 
(11,1), which favors the SO coupling stabilization (17% and 16%, 
respectively vs. 15% for (11,1)). 

Pt12. The cluster (11,1) possesses a square face. Its capping 
gives four supplementary MIDs leading to (12,1), which is the 
only structure with 33 MIDs. Four clusters of class A have 32 
MIDs: the bilayer structure (12,2) comes from a 7 + 5 ar­
rangement, (12,3) and (12,4) are hep structures generated by a 
3 + 5 + 4 arrangement of three CPTLs, and the four layer 1 + 
5 + 3 + 1 sequence gives the mixed-stacked structure (12,5). The 
other three CPTL arrangements gives structures already obtained: 
(12,2) comes from the 2 + 5 + 5 or 3 + 5 + 4 sequence and (12,1) 
from the 3 + 6 + 3 sequence. A structure of class A with 31 MIDs 
has been computed. It is (12,9), which results from the removal 
of an atom from the cuboctahedron (13,4). 

Class C includes a remarkably highly symmetric Did structure, 
the icosahedron (12,6) with 30 MIDs. This compound has a cavity 
that could almost fit an extra atom to generate the Pt13 icosahedron 
(13,33). Among all the possible polytetrahedra, the structure 
(12.7) has been selected since it appears as one of the most 
compact. It is derived from (11,13) by capping a tetrahedron and 
has 30 MIDs. Small distortions of this structure gives the highly 
symmetric CSv all-cis-capped pentagonal bipyramid (12,8) as well 
as the structure (12,12) obtained by removal of an outside atom 
from the icosahedron (13,33). Structure (12,8) has 30 MIDs while 
(12,12) has 11 MIDs and 25 interatomic distances with a value 
1.05 times larger than the MID. In spite of the large number 
of interatomic distances in the range of the MIDs, this structure 
has a cohesive energy that does not compare with the other isomers 
considered. The Z)4/, structure (12,10) is made of three parallel 
square planes and is an extension of the square antiprism (8,22). 
It has 28 MIDs. The last structure considered in the Pt12 series 
is (12,11), which is the all-capped square face rhombus prism. 
It has 30 MIDs. 

At the EHT level, the most stable structure (12,6) is the ico­
sahedron although it does not have the largest number of MIDs. 
Structure (12,6) fits in a small sphere (radius 2.63 A). At the 
EHT + SO level, the relative cohesion of this structure is greatly 
reduced since it only comes at the seventh place. The bilayer 
structure (12,2) is found to be most stable. The strong variation 
in the influence of the SO coupling can again be attributed to the 
difference in the "sp" density [0.61 for (12,5), 0.60 for (12,2), 
and only 0.50 for (12,6)] and to the difference of flexibility in 

the local geometry [(12,6) has only atoms with five bonds while 
(12,2) has four atoms with four bonds]. 

Pt13. Structure (12,1), the Pt12 cluster with the largest number 
of MIDs, has only external triangular faces. If one of these faces 
is capped, it gives two Pt13 cluster with 36 MIDs. They are the 
structures (13,1) and (13,2). Structure (13,1) is a 3 + 6 + 4 hep 
arrangement of three CPTLs, and (13,2) a 3 + 6 + 3 + 1 mix­
ed-stacked arrangement of four CPTLs. The same number of 
MIDs is obtained by capping the square faces of (12,2) and (12,9) 
to give (13,3), a 7 + 6 bilayer, and (13,4), the fee cuboctahedron 
that is also derived from a 3 + 7 + 3 sequence. An identical 
sequence gives (13,5), the anticuboctahedron that belongs to the 
hep growth. Cuboctahedron and anticuboctahedron are derived 
from cluster (10,11) by the addition of a three-atom cluster (3,1), 
introducing 12 MIDs at once. The successive addition of single 
atoms to (10,11) with +3 MIDs first, +4 MIDs next, and +5 
MIDs last, leads to the Pt11 and Pt12 structures of nonmaximum 
compactness. So, the step growth appears less favorable than the 
coalescence of the clusters (3,1) and (10,11) to generate (13,4) 
and (13,5). 

Twenty-seven clusters with 35 MIDs, a MID less than the 
clusters so far mentioned, belong to class A. Let us now describe 
them. From two CPTLs, the 6 + 7 arrangement leads to two new 
clusters, (13,6) and (13,7), while the 8 + 5 arrangement leads 
to (13,8). There are many ways to match three CPTLs. The 3 
+ 7 + 3 sequence gives two clusters, (13,9) and (13,10); (13,9) 
is an fee stack, and (13,10) is an hep one. The 2 + 7 + 4 sequence 
gives three clusters (13,H)-(13,13). The first one is fee, but the 
others are hep. The 1 + 7 + 5 sequence gives four clusters 
numbered from (13,14) to (13,17); the first two are fee and the 
two last are hep. The 7 + 5 + 1 sequence of three CPTLs gives 
a fee structure (13,18) and an hep structure (13,19). The 3 + 
6 + 4 arrangement leads us to rediscover many fee structures, 
(13,6), (13,9), (13,11), (13,14), (13,15), and (13,18) as well as 
an hep structure (13,1); it also generates three new hep structures, 
(13,20), (13,21), and (13,22). The 2 + 6 + 5 sequence gives the 
new hep structures (13,23) and (13,24), in addition to the already 
described structures (13,1) and (13,14). The 6 + 5 + 2 sequence 
gives (13,8) and (13,18), which are not new structures. The 5 
+ 5 + 3 sequence gives, in addition to the structures (13,3), (13,8), 
(13,15), and (13,18), three new hep clusters (13,25), (13,26), and 
(13,27). Finally, the 4 + 5 + 4 sequence generates five new hep 
structures from (13,28) to (13,32) plus the three known clusters 
(13,6), (13,13), and (13,14). 

Icosahedron (13,33) is the last term of the extension of nested 
pentagonal bipyramids. Its nearest-neighbor distances can be 
divided into two distinct sets. One has the value of the MID; there 
exist the 12 such bonds. The other has a slightly increased value 
(1.05 times the MID as already pointed out); there are 30 such 
bonds. By counting all these bonds as MIDs, we get 42, a sig­
nificant increase compared with the most compact structures of 
class A. However, strictly speaking, (13,33) has only 12 MIDs. 
The fact that the cohesion of the icosahedron is far behind that 
of structures with 36 or even 35 MIDs shows how fast the in­
teraction falls off with an increase of the interatomic distance 
around the MID. 

Three structures of Dsh symmetry can be built. Structure 
(13.34) is the union of two polytetrahedra (7,6) which shares a 
common apical vertex. It has 35 MIDs and two other nearest-
neighbor distances at 1.09 times the value of the MID. Structure 
(13.35) is the union of two pentagonal bipyramids which shares 
a common apical vertex. It has 30 MIDs plus seven nearest-
neighbor distances at 1.05 times the value of the MID. The 
shortening of the distance between the equatorial planes leads to 
structure (13,36) with 20 MIDs and 17 nearest-neighbor distances 
at 1.01 times the value of the MID. 

The last structure considered, (13,37), i sa3 + 3 + 3 + 3 cluster 
with MIDs. It is an hep stack which could be considered as the 
union of two octahedra sharing a common face. 

In class A, all the structures with 36 MIDs, but only nine 
structures with 35 MIDs, have been computed. The isomers with 
35 MIDs have been selected as exemplifying the various possi-
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bilities as it was done for the Pt10 series. 
The structure with the largest cohesive energy at the EHT level 

is (13,5). The structure (13,4) is quasi-degenerate with (13,5). 
Next, come (13,3) and structures with 35 MIDs ((13,37), (13,23), 
(13,34), (13,21)) which are more stable than the two last structures 
with 36 MIDs, (13,1) and (13,2). So, the order of stability does 
not fully follow the order of compactness. Structures (13,4) and 
(13,5) are remarkably spherical. They fit within a sphere of radius 
2.77 A. At the EHT + SO level, structures (13,5) and (13,4) 
are less stable than clusters (13,3), the most stable one, and 
(13,23). The reasons for these inversions are similar to what was 
mentioned above (i.e., a large difference in the sp population and 
different local geometry constraints). 

Beyond Pt13. Beyond Pt13, the maximum number of MIDs 
increases regularly. There is always a possibility of adding an 
atom introducing four MIDs at once. Cuboctahedron and an-
ticuboctahedron have six square faces. That ensures a gain of 
four MIDs for their successive cappings. Cuboctahedron (13,4) 
leads to (19,1) in that way, by giving successively (14,1), (15,1), 
(16,1), (17,1), and (18,1). Structure (19,1) has 60 MIDs and 
is built from three CPTLs in a 6 + 7 + 6 arrangement. It is an 
octahedron which has eight triangular faces made of six atoms 
such as in (6,1). The addition of eight clusters (3,1) on each of 
these faces, in a manner similar to the way (6,1) gives (9,4), leads 
to a cluster of 43 metal atoms with 156 MIDs, (43,1), representing 
3.63 MID per atom. Structure (43,1) is noticeable since it has 
12 empty sites corresponding to 5 MIDs. Their occupation leads 
to a cuboctahedron (55,1) with 55 atoms and 216 MIDs (an 
average of 3.93 MID per atom). The existence of external (100) 
surfaces leads us to think that isomers with external (111) surfaces 
and a larger number of MIDs are available (see infra). Clusters 
(43,1) and (55,1) belong to class B. In a similar way as (13,4) 
leads to (19,1), the anticuboctahedron (13,5) leads to a Pt19 

structure (19,2) with 60 MIDs. This growth generates an an-
ticubocathedron of 55 atoms. An icosahedron of 55 atoms may 
also be constructed as an isomer of (55,1). The structure (13,3) 
can also be expanded with an increase of 4 MIDs per atom by 
the addition of a (3,1) cluster on the seven-atom face. This leads 
to (16,2) with three CPTLs (arrangement 3 + 6 + 7) and a Td 

symmetry, each face being either a regular centered hexagon or 
a triangle. On each hexagonal face, it is possible to add a tri­
angular six-atoms cluster (6,1). This addition induced an average 
progression of four MIDs per atoms. The first addition of three 
atoms gives (19,3), and the complete coverage yields the cluster 
(40,1). This cluster is of class B and has 144 MIDs (3.6 MID 
per atom). This structure has four empty sites associated with 
6 MIDs. The addition of four atoms in these sites generates a 
cluster (44,1) of 44 atoms and 168 MIDs, i.e., 3.82 MIDs per 
atom. All the structures (19,1), (19,2), (19,3), (40,1), (43,1), 
(44,1), and (55,1) have high spherical density. 

Another interesting growth starts from the structure (20,1), 
which has 63 MIDs and is made of two fused cuboctahedra. It 
corresponds to a fee arrangement (5 + 10 + 5) of three CPTLs 
and has the same number of MIDs as the Pt20 cluster derived by 
capping (19,1). The capping of all its square faces leads to a Pt28 

cluster (28,1), which is a 9 + 10 + 9 arrangement of three CPTLs 
and has 97 MIDs (3.46 MID per atom). The cluster (28,1) has 
four trapezoidal faces with nine atoms and four triangular faces 
with six atoms. The coverage of the trapezoidal faces by clusters 
(6,1) leads to a Pt52 cluster with 203 MIDs which has four empty 
pentacoordinated sites. Filling three of them gives a Pt55 cluster 
with 218 MIDs, two MIDs more than (55,1). No cluster larger 
than Pt19 has been computed. 

From these simple examples of nucleation, it is obvious that 
the convergerce of number of MIDs per atom toward 6, the value 
of the bulk, is slow with the growth of the clusters. Indeed, the 
average number of MIDs per atom remains below 4 up to 55 
atoms. The values for infinite systems is 3 for a CPTL, 4.5 for 
a bilayer, and more generally (6n - 3)/« for a fee, hep, or mixed 
stack of n layers. 

Infinite Systems. Calculations of different periodic systems are 
presented in Table V. First, two one-dimension chains are 
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Table V. Calculated Energy Data on Infinite Systems 
no. MIDs 

chain Pt6 

chain Pt4 

(100) plane 
1 layer 
2 layers 
3 layers 

(111) plane 
1 layer 
2 layers 
3 layers fee 
3 layers hep 
4 layers fee 
4 layers hep 
4 layers 

mix 
5 layers fee 
5 layers hep 
6 layers fee 
7 layers fee 
9 layers fee 

fee bulk 
hep bulk 

atom nm 

3.00 
3.25 

2.00 
4.00 
4.17 

3.00 
4.50 
5.00 
5.00 
5.25 
5.25 
5.25 

5.4 
5.4 
5.5 
5.57 
5.67 
6.00 
6.00 

EHT 

1.3266 
1.2373 

0.8964 
1.613 
1.7261 

1.3480 
1.7143 
1.8072 
1.8009 
1.8671 
1.8546 
1.8597 

1.8952 
1.8806 
1.9162 
1.9320 
1.9525 
2.0232 
1.9895 

nm 

0.44 
0.31 

0.45 
0.40 
0.38 

0.45 
0.38 
0.36 
0.36 
0.36 
0.35 
0.35 

0.35 
0.35 
0.35 
0.35 
0.34 
0.34 
0.33 

SO 

1.5343 
1.4942 

1.2107 
1.8475 
2.0239 

1.5586 
1.9319 
2.0618 
2.0693 
2.1251 
2.1219 
2.1203 

2.1557 
2.1522 
2.1799 
2.1963 
2.2172 
2.2918 
2.2596 

SO)/nm 

0.51 
0.46 

0.62 
0.46 
0.43 

0.52 
0.43 
0.41 
0.41 
0.40 
0.40 
0.40 

0.40 
0.40 
0.40 
0.39 
0.39 
0.38 
0.37 

%SO 

13.5 
17.2 

26.1 
12.7 
14.7 

13.5 
11.3 
12.4 
13.0 
12.1 
12.6 
12.3 

12.1 
12.6 
12.1 
12.0 
11.9 
11.7 
12.0 

considered: one is the infinite Pt6 ribbon generated by the 
translation of an octahedron (6,5) along its C3 symmetry axis. 
This axis becomes a screw axis for the Pt6 ribbon. This volume 
extension of (13,37) has an antiprismatic pattern. The other is 
the infinite Pt4 ribbon. It is an extension of (8,1) since it is 
generated by the translation of the planar rhombus (4,2) in such 
a way that the different rhombi exist in parallel (111) planes of 
an fee packing. Next, there are the two-dimension systems or 
multilayers: they are the one, two, and three parallel (100) layers 
of an fee packing. In each layer, the platinum atoms form a square 
lattice. There are also the various fee, hep, or mixed parallel (111) 
layers obtained from the matching of one-nine CPTLs. The 
three-dimensional systems studied are the fee and the hep packing 
of the metal. All these periodic systems have numbers of MIDs 
per atoms which go from 2 to 6 as shown in Table V. For the 
packing of CPTLs the number of MIDs varies from three for the 
(111) monolayer to the bulk. The cohesive energy per atom 
increases rapidly from 1.35 to 2.02. In all the cases, the fee and 
hep (111) stackings have very similar energies. For the monolayer 
the cohesive energy represents only 68% of the cohesive energy 
of the bulk; the bilayer reaches 84% and the trilayer 90%. The 
cohesive energy per MID decreases smoothly. It is noteworthy 
that the values for the infinite systems remain close to the values 
of the clusters for an equivalent number of MIDs per atom. The 
(100) monolayer can be compared with clusters (6,5) and (6,8), 
while the monolayer (111) and the ribbon Pt6 are slightly better 
than the compounds (16,1) and (16,2). 

The sp density per atom increases from 0.83 to 0.95 for the 
(111) multilayers; conversely, the SO coupling increases from 0.21 
to 0.27 eV. It, however, corresponds to a relative decrease of the 
SO contribution. Per MID, the sp density decreases from 0.28 
to 0.16 and the SO contribution falls from 13.5% (in the (111) 
monolayer) to 11.7% (in the fee bulk). The (111) monolayer is 
found to be more stable than the (100) monolayer. This result 
is consistent with the order of densities. Structure (111) has 3 
MIDs per atom while (100) has only 2. It is interesting to note 
that the (100) layers have higher SO coupling contributions than 
the (111) layers. It is peculiarly striking for the monolayer. The 
high SO contribution (26%) is not explained by the sp population 
(0.62). For a comparable sp population and a same number of 
MIDs per atom, the SO contribution accounts for 18% in the 
compound (6,5). This high SO contribution for the (100) layer 
comes from the weak geometrical constraints of the lone plane. 
This conflicts, however, with the general observation that the 
presence of square faces on clusters did not lead in general to a 
large SO term. 
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For the bulk metal, the fee stacking is found to be more stable 
than the hep stacking. The cohesive energy per platinum is 2.023 
and 2.292 eV at the EHT and EHT + SO levels, respectively, 
for the fee stacking. These values are the upper limits for the 
computed clusters. The stabilization due to the SO coupling 
represents 11.7% of the cohesive energy. This value is in agreement 
with the results published by Cyrot-Lackmann et al.21 The hep 
stacking has a cohesive energy of 1.990 and 2.260 eV at the EHT 
and EHT + SO levels, respectively. For all the infinite systems, 
the SO coupling is found to favor the hep systems, even if those 
do not become more stable than the fee ones. This was not always 
the case for the clusters, one example being the cuboctahedron 
(13,4), which is more stable than the anticuboctahedron (13,5) 
after the SO coupling contribution is included. 

Experimentally, it is found that the most stable packing of the 
metallic platinum in the solid state is fee. The heat of atomiza-
tion2a is found to be 5.85 eV per atom at 25 0C. This value 
corresponds to a final system with the single atoms in their ground 
state. It is not directly comparable to the EHT partition of the 
cohesive energy. 

Consideration of the Short-Range Repulsive Interactions. So 
far, all structures presented have a common value for the distances 
separating the first-nearest-neighbor atoms, the MID. For most 
of them, the direct interaction with atoms other than their first 
nearest neighbors is negligible, because the second-nearest-neighbor 
distance (SND) is large compared with the MID (usually 1.414 
MID). Some clusters, however, have SND that are only slightly 
larger than the MID. The structures (7,12), (8,25), (9,19), 
(10,37), (11,16), and (12,12), derived from the icosahedron (13,33) 
by removing the appropriate number of adjacent atoms, have this 
property. The number of their SNDs is significant when it is 
compared with the number of their MIDs: 12 and 30 respectively, 
for (13,33). In the series (7,10), (8,21), (9,12)-(9,16), and (10,36), 
however, the number of small SNDs is always relatively low: one 
SND and 15 MIDs for (7,10), two SNDs and 21 MIDs for (9,13). 
The correction is expected to be weak in the case of a low relative 
number of SNDs since the destabilization due to the compression 
of many MIDs opposes the shortening of one or two SNDs.22 To 
get quantitative information on the possible distance relaxations, 
we tested various distortions on (7,10) and studied the series 
(7,12)—(13,33) in detail by performing geometry optimizations 
with the introduction of short-range repulsive contributions in the 
classical EHT program. 

Let us first consider the correcting method which involves a 
modification of the HtJ interacting term by a factor 1 - exp(a -
bR). Three sets of parameters a and b have been selected by 
imposing a first-nearest-neighbor distance of 2.77 A in the cu­
boctahedron (13,3). The cuboctahedron is a member of class A. 
It has been found that whatever the selected parameters are (Table 
VI), they do not induce significant distance changes for the other 
compounds of the same class. For example, the interatomic 
distances of the Pt2 dimer and the Pt4 tetrahedron are equal to 
the fixed value of the MID (2.77 A) within 0.01 A. This result 
clearly shows that, in class A, the second-nearest-neighbor distance 
(1.414 times the first-nearest-neighbor distance) creates no sig­
nificant repulsive contribution. 

For (7,10), the optimization is supposed to shorten the apical 
distance. However, because it induces the concomitant shortening 
of 15 nearest-neighbor distances, the apical shortening is expected 
to be small. Two optimizations have been considered. One scales 
down the whole structure by a common factor, the other increases 
the peripherical equatorial bonds and decreases the apical distance 
while it holds constant the length of the other bonds. The latter 
situation is the most favorable, but it does not significantly affect 
the initial structure since it requires that we increase five bond 
lengths while reducing only one. The calculations are in agreement 
with this deduction since the optimal apical distances are found 
to be equal to 2.76, 2.77, and 2.77 A for the three sets of pa­
rameters, respectively. For compounds such as (7,10), the con­
sideration of the fixed value of the MID seems justified. 

The other clusters of the series (7,12)—(13,33) have more 
flexibility. Table VI gives the optimized distances and energies 

Table VI. Interatomic Distances and Energies with the Corrected 
Hamiltonian Hf = Htj{\ - exp(a - br)" 

compd 

(13,33) 
(13,14) 
(12,12) 
(12,1) 
(11,16) 
(11,1) 
(10,37) 
(10,35) 
(9,19) 
(9,20) 
(8,25) 
(8,24) 
(7,12) 
(7,10) 

set 3 

2.89/2.75 
0.953 
2.88/2.74 
0.850 
2.88/2.74 
1.041 
2.88/2.74 
1.129 
2.88/2.74 
1.065 
2.88/2.74 
0.929 
2.86/2.72 
0.761 

set 2 

2.86/2.72 
0.561 
2.87/2.73 
0.533 
2.87/2.73 
0.758 
2.86/2.72 
0.880 
2.88/2.74 
0.851 
2.88/2.74 
0.754 
2.89/2.75 
0.605 

set 1 

2.83/2.69 
0.160 
2.85/2.71 
0.144 
2.85/2.71 
0.414 
2.85/2.71 
0.555 
2.86/2.72 
0.578 
2.86/2.72 
0.507 
2.86/2.72 
0.354 

direct EHT 

1.30 

3.84 

3.64 

3.22 

2.65 

1.24 

1.01 

"The values for three sets of parameters (39.375/15.75, 70.2/27, 
119.25/45) are reported; r is in angstrom. For each optimized struc­
ture, the table contains the values of the two first-nearest-neighbor 
distances in angstroms and the energy difference in eV with a reference 
isomer of class A. For each set of isomers, the first line gives the 
numbering of the optimized structure and its optimized distances; the 
second line gives the numbering of the reference compound and the 
energy difference. 

Table VII. Interatomic Distances and Energies with the Two-Step 
Correction E = £(EHT) + £ exp(c - dr)" 

compd 

(13,33) 
(13,3) 

set 1 

2.92/2.78 
1.6155 

set 2 

2.86/2.72 
0.5668 

set 3 

2.86/2.72 
0.1832 

set 4 

2.86/2.72 
0.1244 

"The values for four sets of parameters (634.12/231.05, 60.42/ 
23.10, 29.11/11.55, 18.85/7.07) are reported; r is angstrom. For the 
optimized structure, the table contains the values of the two first-
nearest-neighbor distances in angstroms and the energy difference in 
eV with the reference isomer of class A (13,3). The first line gives the 
optimized distances and the second line the energy difference. 

for the three sets of parameters. It shows that the smallest in­
teratomic distances can be significantly affected (0.08 A for the 
largest change) and that the optimized structures remain less stable 
than their reference isomer, even if the difference is reduced 
significantly. The icosahedron has 12 internal interatomic dis­
tances which have to be shortened to a value smaller than the fixed 
MID in order to reduce the 30 external interatomic distances (2.92 
A). Table VI shows that the internal distances are reduced to 
2.75, 2.72, and 2.69 A for the different parameter sets. Cyrot-
Lackmann et al. reported a computed value of 2.71 A. 

The second correction technique of the classical EHT method 
has been applied to the comparison between the icosahedron and 
the cuboctahedron (13,3). This two-step correction requires that 
we substract a repulsive contribution of 36 exp(c - 2.1Id) eV from 
the classical EHT cohesive energy of (13,3) and a contribution 
of 12 exp(c - dr) + 30 exp(c - l.Q5dr) from the classical EHT 
cohesive energy of (13,33) where r is the internal distance of the 
icosahedron. The results are reported in Table VII for the four 
selected sets of parameters c and d. In all cases, the cuboctahedron 
remains the most stable isomer. 

These results show that the constraint of a fixed value for the 
first-nearest-neighbor distance does not prevent us from finding 
the correct order of stability for the platinum clusters. 

5. Discussion 

The first point to discuss is concerned with the influence of the 
SO coupling for the various clusters and infinite systems. Although 
the introduction of the SO coupling affects the energy of all the 
EHT orbitals, the total energy changes only if the LS mean value 
is not zero. When the electronic population of a given atom differs 
from d10, this atom has a nonzero contribution to the LS value 
according to the importance of its d depopulation (or equivalently 
of its sp atomic population). As the atomic d population is related 
to the cluster geometry, the importance of the SO effect is ge­
ometry dependent. Usually, the large differences in the SO 
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Table VIII. Net Charges and "s-3p' 
Two-Dimension Infinite Systems" 

Densities for Each Layer of the 

Figure 2. Lower curve: plot of stabilization energy per atom brought 
by the spin-orbit coupling vs. the number of platinum atoms in the 
clusters. Upper curve: plot of the "s-3p" electronic density per atom vs. 
the number of atoms in the clusters. 

contribution could be related to those in the sp population. For 
example, (11,2) and (11,1) have a SO contribution of 0.408 and 
0.125 eV, respectively; the sp population of (11,2) is 0.38 electron 
larger than the corresponding population of (11,1). 

The stabilization energy per atom induced by the SO coupling 
(the difference between the EHT + SO and the EHT energies) 
and the sp population per atom as a function of the number of 
atoms are reported in Figure 2 for the most stable clusters. Both 
curves show a sharp increase from Pt1 to Pt4. From Pt4 to Pt9, 
a smoother decrease is observed. This decrease is more pronounced 
for the SO energy than for the sp electron density. From Pt9 to 
the bulk, both curves show small oscillations with extremum for 
the same dimension of the clusters. It is interesting to note that 
the density curve is quite flat between Pt5 and Pt15 (the density 
is between 0.61 and 0.63 electron), but it has a steep increase 
starting at Pt16. Indeed, the sp density goes from 0.64 to 0.78 
electron when the cluster grows from Pt16 to Pt19 By estimating 
that this increase in rate will continue up to the value of the bulk, 
we see that clusters around Pt25 have already an sp density com­
parable to the bulk metal. If we consider that a given sp population 
is a specific property of the bulk metal, clusters as small as 
Pt25-Pt30 will have quite similar electronic properties with the bulk 
metal. 

A more detailed analysis of the sp population has been done 
for various clusters and infinite systems (see Table VIII) in order 
to see how this population varies with the surrounding atoms. 
Table VIII shows that the internal atoms of infinite sheets have 
sp populations that are similar to those of the bulk metal. This 
property is true even for a trilayer system. Thus according to this 
result, the atoms located in the layer just below the surface already 
have the electronic properties of the atoms in the deep bulk. The 
atoms of the surface behave quite differently since their sp pop­
ulation is reduced by 0.1-0.2 electron compared with the bulk 
atoms and since they are negatively charged (-0.1, -0.2 electron) 
while the atoms in the internal layers are all positively charged 
(up to 0.2 electron). Interestingly, these properties are observed 
for clusters such as (19,1). The outer atoms have an sp population 
of 0.64 electron, and the internal one has a population of 0.94 
electron. 

The d orbital population is not, however, the only factor that 
determines the importance of the SO coupling on the total energy. 
Indeed, for two metallic systems with identical sp orbital popu­
lations but different geometries, the influence of the SO term is 
different. This is due to the fact that some geometry patterns 
fit better than others the simultaneous symmetry requirements 
of the electrostatic and SO coupling interactions. Precisely, some 
local geometries, while exceptionally stable at the EHT level, 
appear to be relatively unfavorable for the SO coupling. The Pt4 

square skeleton appears to be such an example. The octahedron 
(6,5), the capped trigonal prisms (7,11) and (8,24), the octahe­
dron-derived structures (8,10), (8,12), (9,9), and (9,10), and the 
square-derived structures (8,22), (9,17), and (10,35) illustrate this 
finding. 

multilayer 

3 layers 

3 layers 

4 layers 

5 layers 

5 layers 

6 layers 

7 layers 

(100) 

(111) 
fee 
(111) 
hep 
(111) 
fee 
(111) 
hep 
(111) 
mix 
(111) 
fee 
(111) 
hep 
(111) 
fee 
(111) 
fee 

external 
layer 

-0.0961 
0.841 

-0.108 
0.921 

-0.088 
0.879 

-0.165 
0.865 

-0.166 
0.885 

-0.185/-0.195 
0.871/0.875 

-0.137 
0.862 

-0.169 
0.851 

-0.199 
0.910 

-0.194 
0.873 

second 
layer 

+0.1921 
0.957 

+0.216 
0.969 

+0.196 
0.967 

+0.165 
0.955 

+0.166 
0.960 

+0.190 
0.956/0.954 

+0.067 
0.942 

+0.134 
0.923 

+0.047 
0.893 

+0.020 
0.958 

third 
layer 

+0.141 
0.958 

+0.066 
0.924 

+0.153 
0.972 

+0.120 
0.962 

fourth 
layer 

+0.110 
0.951 

" The charges are in electron per atom. The first line gives the total 
net charge and the second the "s-3p" population density. 

Figure 3. Plot of the cohesion energy per atom at the EHT-SO level vs. 
the number of platinum atom for the most stable clusters. 

SO coupling acts as a local symmetry breaker and mixes to­
gether occupied and vacant orbitals. It is expected that the SO 
coupling will noticeably reduce the energy gap between the oc­
cupied and vacant orbitals whenever a large gap at the EHT level 
is due to symmetry factors. Since a large gap is generally asso­
ciated with a large cluster stability,33 it is understandable that 
the SO coupling, by decreasing all the energy gaps, reduces the 
differences between the stability of the symmetric (large) gaps 
and those with lower symmetry. 

It appears that the increases of geometrical constraints and of 
sp population with the coordination number play balanced roles. 
The value of the SO contribution per platinum indeed shows no 
clear trend on going from Pt4 (0.26 eV) to the crystal bulk (0.27 
eV), passing by lower values as 0.18 eV for Pt7 or Pt9. Since the 
cohesive energy per platinum increases with cluster size, the 
relative contribution of the SO coupling to the total energy de­
creases from 30% to 12% in going from Pt5 to the metal bulk while 
the sp population increases from 0.64 to 0.95 electron (Tables III 
and V). 

Let us now consider the general features of the cluster growth 
as depicted in the previous section. In Figure 3, the cohesive energy 
per platinum is represented as a function of the number of atoms. 
It shows a sharp increase of this energy up to Pt6 and a smooth 
regular increase for the larger clusters. Figure 3 shows that, as 
expected, the mean value for the Pt19 clusters are still far smaller 
than that for the bulk since there are only a few atoms having 
their 12 neighbors. In Figure 4, the same cohesive energy per 
atom is drawn as a function of the mean number of MIDs per 
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Figure 4. Plot of the cohesion energy per atom at the EHT-SO level vs. 
the mean number of MIDs per platinum atom for various clusters (X) 
and infinite systems (O). 

atom. It shows that the cohesive energy is roughly proportional 
to the mean number of metal-metal bonds engaged by each atom. 
More precisely, Figure 4 shows that the clusters have some extra 
stability compared with the mean value for the bulk. The met­
al-metal bond, on the average, is stronger in the cluster than in 
the bulk metal. The systems with the stronger bonds are clusters 
with a number of MIDs between two and four. This result could 
explain why it is found that small coordinatively saturated clusters 
can form quite stable molecular entities since the metallic 
framework is quite strongly bonded. An interesting feature of 
Figure 4 is that the finite clusters and the infinite systems with 
the same mean number of MIDs per atom have the same mean 
cohesive energy. This reinforces our conclusion that a key factor 
in stability of metallic systems is the number of bonds per atom 
they have, regardless of detailed geometrical patterns. 

Figure 5 shows the enthalpies of the reactions Pt„_, + Pt —* 
Ptn as a function of n, where the dimension of the clusters refers 
to the most stable isomers. These reactions could imply a large 
reorganization of the metallic structure. The figure shows that 
in general the addition of an atom to any Ptn cluster is always 
exothermic. This result does not offer any indication on the energy 
profile of the possible reaction paths for such a process. However, 
in agreement with the Hammond postulate, it is reasonable that 
the most exothermic reaction would correspond to the kinetically 
more feasible process. 

At the EHT level, the successive enthalpies of the cluster growth 
present three maxima for n = 6, 9, and 13. These clusters have 
high symmetries and large spherical densities. 

To analyze in more detail the influence of the spherical density 
on stability, let us consider the growth of the enveloping sphere 
with the cluster size. The maximum sphericity sequence and the 
associated radii are (4,1)/1.70, (5,2)/1.96, (6,5)/1.96, (7,10)/2.36, 
(8,22)/2,28, (9,23)/2.40, (10,38)/2.63, (ll,15)/2.63, (12,6)/2.63, 
and (13,4-5)/2.77 A. AU these clusters have large cohesive en­
ergies per MID. They are not, however, in all cases the most stable 
isomers since some of them have relatively low numbers of MIDs 
((5,2), (8,24) (9,23), (10,38), (11,15)). The most stable clusters 
tend to have a large spherical density and a high number of MIDs 
simultaneously. These are (4,1), (6,5), (9,20), and (13,4-5). Thus, 
the consideration of the spherical density allows us to understand 
the observed extrema of Figure 5. It also explains the extrema 
for the mean energy per MID. For example, the maximum of 
cohesive energy for Pt9 in Figure 5 is explained by the conservation 
of the radius from Pt8 (2.76 A) while (9,20) possesses one atom 
and four MIDs more. A similar situation occurs for (6,5) with 
respect to (5,2). At the EHT level, when the consideration of the 
spherical density conflicts with these of the maximum number 
of MIDs, the most stable structure results from a compromise. 
This one is illustrated by the Pt8 isomer (8,24), with 17 MIDs 
and a radius of 2.76 A which is better than both (8,22) with a 
radius of 2.28 A but only 16 MIDs, and (8,21) with 18 MIDs 
but a large radius (2.91 A). Similarly, structure (9,20) with 21 

1 5 10 15 20 

Figure 5. Plot of the variation of energy at the EHT-SO level for the 
reaction Pt„_, + Pt-* Ptn vs. n. 

MIDs and a radius of 2.76 A is better than (9,23) with 18 MIDs 
and a radius of 2.40 A. Structure (10,35) with 24 MIDs and a 
radius of 3.12 A is more stable than (10,38) with 20 MIDs and 
a radius of 2.63 A and than (10,31) with 25 MIDs and a radius 
3.49 A. Structure (11,1) with a radius of 3.20 A and 29 MIDs 
is more stable than (11,15) with a radius of 2.63 A and 25 MIDs. 
Structure (12,6) with a radius of 2.63 A and 30 MIDs is more 
stable than (12,1) with 3.20 A and 33 MIDs. At the SO level, 
all these highly spherical clusters, except Pt4 (Td) with an extra 
stabilization due to the first appearance of a large sp population 
as already discussed, have a small relative SO contribution (see 
Table III). It seems that for the molecules and atoms (s0 and d10) 
a spherical electronic distribution corresponds to a small SO 
contribution. 

As atoms begin to coalesce in free space or, likewise, in a zeolite 
(assuming that metal-support interactions do not perturb the order 
of stability), we can expect that the n = 4, 6, 9, 13 Ptn clusters 
will exist in relatively high concentration. The nonaggregation 
of these small clusters can only arise either from external sta­
bilization by the surrounding environment (metal-support in­
teractions, complexation by various ligands) or from entropy 
factors (dispersion of the fragments on the supporting material). 
Zeolites are, in both senses, favorable situations to observe clusters 
of small size. 

Summarized in Table VI are the Fermi energy levels of the 
systems. The Fermi level is raised with the size of the cluster. 
For Pt1, it is the highest d orbital; when the size of the clusters 
increases, the d band broadens out and the position of the Fermi 
level could only be pushed up to a high-energy value if the sp band 
did not exist. The existence of that band reduces the importance 
of the Fermi level shift. The calculated position of the Fermi level 
moves from -12.0 to -11.2 eV on going from Pt2 to the bulk. 
Taking into account the spin-orbit coupling enlarges the band 
dispersion, and the resulting Fermi levels are pushed up to slightly 
higher values. The difference between the EHT and EHT + SO 
Fermi level is approximately 0.35 eV for a large range of clusters. 

The net negative charge on the surface of the external layers 
of the infinite systems (Table VIII) results from the difference 
in the position of the Fermi level for the monolayers and the bulk. 

Due to the evolution of the Fermi level with the size of the 
metallic aggregates, large systems may be assumed to be better 
electron donors than small ones. Furthermore, if a small system 
(cluster or infinite layer) is used as a model for a larger system 
(a surface), this model should be corrected in some way by adding 
electrons in order to put the Fermi level at its correct bulk position. 

6. Conclusion 

The present study gives the most stable isomers of the platinum 
clusters up to Pt13. These clusters show a wide variety of shapes 
and no obvious pattern appears for the metallic growth up to this 
size.23 Indeed, rarely, the most stable Ptn+1 cluster derives directly 

(23) Sloane, N. J. A. Sd. Am. 1984, 250, 92. 
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from the most stable Pt„ cluster by addition of a single Pt atom 
to the unmodified compact Ptn structure. This would imply the 
formation of an outgrowth which, except for the structure (8,21), 
cannot generate a structure with large spherical density. A sig­
nificant reorganization is required to restore the compactness. In 
a similar way, the low-density surface of a crystal restructures 
relative to the crystal bulk. The number of MIDs is a good index 
number of the stability of the clusters of class A. Indeed, all its 
most stable clusters have the largest number of MIDs at the EHT 
level. This property is also true at the EHT-SO level except for 
the structures (11,1) and (12,1), which come after (11,2) and 
(12,2) while they have one MID less. These exceptions have been 
explained by the small geometrical constraints existing for bilayer 
clusters and by the sp populations. 

When structures of class C are considered, the MID index 
number is only a helpful indication of the stability at the EHT 
level since some structures of class C have the largest cohesive 
energies without having the maximum number of MIDs. These 
structures have a large spherical density. Structures (8,24), 
(10,35), and (12,6) illustrate this point. As their SO contribution 
is weak, structures with the maximum number of MIDs ((8,21) 
from class C and (10,1) and (12,2) from class A) reappear as the 
most stable isomers at the EHT + SO level. 

Since structures of class C are not suitable for an extension 

The isopiestic method for the determination of water activities 
in salt solutions is simple, precise, and general. Known amounts 
of nonvolatile solutes are placed in open containers in an isothermal 
enclosure into which water is introduced. At equilibrium the 
solution water activities are equal and the compositions are de­
termined by weighing. With activities of reference solutions, e.g., 
NaCl, KCl, H2SO4, and CaCl2, determined by vapor pressure and 
other measurements, the comparison method has yielded activities 
O1 of hundreds of solutions over wide ranges of concentrations and 
temperatures.1 With temperatures fixed to ±0.05 K or better, 
temperature differences between samples less than 10~4 K, and 
mass measurements precise to ±0.05%, the method yields com­
position ratios with a precision greater than 1O-4 and ultimately, 
osmotic coefficients <j> = -(Njv) In A1 with a precision greater than 
10~3. Here Â  = [H20]/[X] is the solvent-solute and v the ion-
solute molar ratio. 

A lower bound on ax is placed by the crystallization of the 
reference, e.g., a, > 0.753 for NaCl at 25 0C. In a variation on 
the method which avoids the lower bound, Stoker' replaced the 
solution reference with pure water at reduced temperature. He 
obtained good agreement with other measurements but did not 

(1) Robinson, R. A.; Stokes, R. H., "Electrolyte Solutions"; Butterworths; 
London, 1959. 

(2) Stokes, R. H. J. Am. Chem. Soc. 1947, 69, 1291. 
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toward an infinite crystal and their cohesive energies are lower 
than for those of the fee or hep bulk, compounds of class A or 
B should prevail for the medium or large clusters. With such a 
growth, the mean number of MID per atom can converge to 6, 
the value for the bulk. For the small systems, the occurrence of 
some fragments of fee or hep type (Pt3, Pt4, Pt5, Pt6, Pt10, Pt11, 
Pt12, and Pt n ) in the growth at the EHT + SO level is due more 
to their own compactness than to their classification as clusters 
of class A. 

The EHT and EHT + SO methods are more selective than the 
simple Lennard-Jones interactions. For example, one Pt13 

structure clearly emerges as the most stable within the EHT + 
SO framework while 987 structures are quasi-degenerate within 
a Lennard-Jones analysis.311 

The present results will be used to study the hydrogenation 
process of the Ptn clusters. 
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push ax below 0.2889. A second lower bound is placed by crys­
tallization of the unknown of course. Though many of the com­
pounds listed in ref 1 have been measured to saturated solution, 
we know of no listings there for supersaturated solutions. Ionic 
solutions at the high concentrations of supersaturation may become 
ordered liquids for which water activity can serve as a probe. 

We report here the results of an isopiestic study of lithium 
bromide and lithium iodide solutions by the Stokes method in 
which water activity is measured down to 4 X 10"5. Our method 
differs in the handling of the sample. We have reduced its mass 
to 10~9 g, compared with the 1 g typical of isopiestic samples, have 
levitated it electrodynamicaUy in a small sealed chamber from 
which air is removed, and have weighed it in situ and continuously 
with a noncontacting electrostatic balance. 

With a microscopic spherical sample in a small chamber con­
taining only water vapor, equilibrium is established much faster. 
More importantly, levitation of microscopic droplets allows su­
persaturation terminated only by homogeneous nucleation of 
crystallization. 

We apply regular solution theory,3 adsorption model theory,4 

and stepped-hydration model theory5 to our results. 

(3) Pitzer, K. S. Ber. Bunsenges. Phys. Chem. 1981, 85, 9i2. 
(4) Stokes, R. H.; Robinson, R. A. / . Am. Chem. Soc. 1948, 70, 1870. 
(5) Stokes, R. H.; Robinson, R. A. / . SoIn. Chem. 1973, 2, 173. 
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Abstract: In a variation of the Stokes bithermal isopiestic method, single microscopic drops of lithium bromide and lithium 
iodide aqueous solution at room temperature are levitated electrodynamicaUy in a closed chamber from which air is removed 
and to which is connected a vial of pure water at lower temperature. Water temperature is varied between -74 and +21 °C 
to measure concentrated and supersaturated solution water activity from 4.5 X 10"! to 0.9. The results are compared with 
those of regular solution theory and the adsorption and stepped-hydration theories of Robinson and Stokes. 


